Evaluation of Polyurethane Elastomers for Encapsulation of Hydroacoustic Transducers
Hydroacoustic transducers are devices capable of converting mechanical energy from acoustic waves into electrical energy, and vice versa, through piezoelectric elements connected to electronics that need to be protected from contact with the water. This tightness is provided by the encapsulation of...
Saved in:
Published in: | Macromolecular symposia. Vol. 394; no. 1 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Wiley Subscription Services, Inc
01-12-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Hydroacoustic transducers are devices capable of converting mechanical energy from acoustic waves into electrical energy, and vice versa, through piezoelectric elements connected to electronics that need to be protected from contact with the water. This tightness is provided by the encapsulation of the transducers with elastomers. The use of fillers and chain extenders are known to promote a barrier for water diffusion, but it would inevitably change the other properties of the elastomer. Thus, this work aims to evaluate the effects of filler and chain extender addition on the properties of polyurethane elastomers (PUR) for this application. Thermogravimetric, thermomechanical, glass‐rubber transition temperature, hardness, and dielectric loss analyses are performed. It is observed an increase in the dielectric loss, hardness, and thermal stability with the addition of mineral fillers and carbon black. The addition of chain extender promoted a greater hardness in the final elastomer, but has no measurable effects on the dielectric loss, and decreased the thermal and dimension stability with temperature. Glass‐rubber transition temperatures remain in the range from –78 to –80 °C, which is in the acceptable range for the application as encapsulants. |
---|---|
AbstractList | Hydroacoustic transducers are devices capable of converting mechanical energy from acoustic waves into electrical energy, and vice versa, through piezoelectric elements connected to electronics that need to be protected from contact with the water. This tightness is provided by the encapsulation of the transducers with elastomers. The use of fillers and chain extenders are known to promote a barrier for water diffusion, but it would inevitably change the other properties of the elastomer. Thus, this work aims to evaluate the effects of filler and chain extender addition on the properties of polyurethane elastomers (PUR) for this application. Thermogravimetric, thermomechanical, glass‐rubber transition temperature, hardness, and dielectric loss analyses are performed. It is observed an increase in the dielectric loss, hardness, and thermal stability with the addition of mineral fillers and carbon black. The addition of chain extender promoted a greater hardness in the final elastomer, but has no measurable effects on the dielectric loss, and decreased the thermal and dimension stability with temperature. Glass‐rubber transition temperatures remain in the range from –78 to –80 °C, which is in the acceptable range for the application as encapsulants. Hydroacoustic transducers are devices capable of converting mechanical energy from acoustic waves into electrical energy, and vice versa, through piezoelectric elements connected to electronics that need to be protected from contact with the water. This tightness is provided by the encapsulation of the transducers with elastomers. The use of fillers and chain extenders are known to promote a barrier for water diffusion, but it would inevitably change the other properties of the elastomer. Thus, this work aims to evaluate the effects of filler and chain extender addition on the properties of polyurethane elastomers (PUR) for this application. Thermogravimetric, thermomechanical, glass‐rubber transition temperature, hardness, and dielectric loss analyses are performed. It is observed an increase in the dielectric loss, hardness, and thermal stability with the addition of mineral fillers and carbon black. The addition of chain extender promoted a greater hardness in the final elastomer, but has no measurable effects on the dielectric loss, and decreased the thermal and dimension stability with temperature. Glass‐rubber transition temperatures remain in the range from –78 to –80 °C, which is in the acceptable range for the application as encapsulants. |
Author | Lemos, Maurício F. Lima, Roberto da C. Santos, Jonas F. Cunha, Rodrigo H. |
Author_xml | – sequence: 1 givenname: Maurício F. surname: Lemos fullname: Lemos, Maurício F. email: mauricio.lemos@marinha.mil.br organization: Instituto de Pesquisas da Marinha (IPqM) – sequence: 2 givenname: Roberto da C. surname: Lima fullname: Lima, Roberto da C. organization: Instituto de Pesquisas da Marinha (IPqM) – sequence: 3 givenname: Rodrigo H. surname: Cunha fullname: Cunha, Rodrigo H. organization: Instituto de Pesquisas da Marinha (IPqM) – sequence: 4 givenname: Jonas F. surname: Santos fullname: Santos, Jonas F. organization: Instituto de Pesquisas da Marinha (IPqM) |
BookMark | eNqFkE1LAzEQhoNUsK1ePS943pqP_UiOpaxWUBSsB09hkk1wyzapya6y_94tlXp0Lu8cnmcG3hmaOO8MQtcELwjG9HYHcVhQTPE4nJ2hKckpSZnAeDLumNKUsAJfoFmM2xERoiRTtKm-oO2ha7xLvE1efDv0wXQf4ExStRA7vzMhJtaHpHIa9rFvT_B6qIMH7fvYNTrZBHCx7vWIX6JzC200V785R2931Wa1Th-f7x9Wy8dUszxjqTKC8pJTQ7Jc2IIorrICMCU5EVhgxiyvhSktz0pMgKlagGJZrTTlXBUAbI5ujnf3wX_2JnZy6_vgxpeSHpySF0yM1OJI6eBjDMbKfWh2EAZJsDw0Jw_NyVNzoyCOwnfTmuEfWj4tX9__3B8ZwXTm |
CitedBy_id | crossref_primary_10_1016_j_mtcomm_2022_103476 crossref_primary_10_1002_pen_26056 crossref_primary_10_1088_1742_6596_2680_1_012032 crossref_primary_10_3390_polym13132150 |
Cites_doi | 10.1007/s00289-009-0242-9 10.3390/molecules23102515 10.1002/pc.23351 10.1016/j.matdes.2015.08.049 10.1016/j.compositesb.2017.04.017 10.1016/j.jiec.2018.06.018 10.5028/jatm.v9i3.795 10.1121/1.392462 10.1016/j.polymer.2010.09.002 10.1016/j.porgcoat.2018.04.014 10.1121/1.386753 10.1002/pen.24505 10.1109/EuroSimE.2016.7463339 10.1590/S1516-14392003000200013 10.1007/978-3-319-39044-4 10.1016/j.apenergy.2015.10.174 10.1016/0032-3861(85)90216-2 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/masy.202000083 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3900 |
EndPage | n/a |
ExternalDocumentID | 10_1002_masy_202000083 MASY202000083 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG HBH HF~ HGLYW HHY HHZ HVGLF H~9 IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NNB O66 OIG P2P P2W P4D PALCI Q.N Q11 QB0 QRW R.K RDN RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WH7 WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZE2 ZZTAW ~IA ~KM ~WT AAMNL AAYXX CITATION 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c3543-be928782e1459f61b8b46a02151909033f8d9e7f84701a3bd9ab34dbc288b6aa3 |
IEDL.DBID | 33P |
ISSN | 1022-1360 |
IngestDate | Thu Oct 10 19:12:47 EDT 2024 Thu Nov 21 23:04:09 EST 2024 Sat Aug 24 01:05:29 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3543-be928782e1459f61b8b46a02151909033f8d9e7f84701a3bd9ab34dbc288b6aa3 |
PQID | 2470178639 |
PQPubID | 2034342 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2470178639 crossref_primary_10_1002_masy_202000083 wiley_primary_10_1002_masy_202000083_MASY202000083 |
PublicationCentury | 2000 |
PublicationDate | December 2020 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Macromolecular symposia. |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 22 2010; 65 1981; 70 2003; 6 2018; 123 2017; 57 2015; 87 1998 2007 2018 1995 2016 1993 2017; 122 2018; 23 2018; 67 1985; 78 2016; 37 2017; 9 1985; 26 2010; 51 2016; 162 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 Lima R. C. (e_1_2_8_12_1) 2004; 22 e_1_2_8_15_1 e_1_2_8_10_1 e_1_2_8_11_1 Gołofit T. (e_1_2_8_16_1) 2018 |
References_xml | – volume: 87 start-page: 324 year: 2015 publication-title: Mater. Des. – volume: 78 start-page: 406 year: 1985 publication-title: J. Acoust. Soc. Am. – volume: 123 start-page: 238 year: 2018 publication-title: Prog. Org. Coat. – volume: 22 start-page: 245 year: 2004 publication-title: Mater. Aci‐Poland – volume: 6 start-page: 187 year: 2003 publication-title: Mater. Res. – volume: 162 start-page: 1024 year: 2016 publication-title: Appl. Energy – year: 2007 – volume: 51 start-page: 5186 year: 2010 publication-title: Polymer – volume: 37 start-page: 1786 year: 2016 publication-title: Polym. Compos. – volume: 23 start-page: 2515 year: 2018 publication-title: Molecules – year: 1995 – volume: 70 start-page: 622 year: 1981 publication-title: J. Acoust. Soc. Am. – volume: 122 start-page: 192 year: 2017 publication-title: Composites, Part B – year: 2016 – start-page: 63 year: 2018 publication-title: Polimery – year: 1993 – volume: 65 start-page: 753 year: 2010 publication-title: Polym. Bull. – volume: 67 start-page: 1 year: 2018 publication-title: J. Ind. Eng. Chem. – volume: 9 start-page: 379 year: 2017 publication-title: J. Aerosp. Technol. Manag. – volume: 26 start-page: 963 year: 1985 publication-title: Polymer – year: 1998 – volume: 57 start-page: 1242 year: 2017 publication-title: Polym. Eng. Sci. – ident: e_1_2_8_25_1 doi: 10.1007/s00289-009-0242-9 – ident: e_1_2_8_20_1 doi: 10.3390/molecules23102515 – ident: e_1_2_8_8_1 doi: 10.1002/pc.23351 – ident: e_1_2_8_15_1 doi: 10.1016/j.matdes.2015.08.049 – ident: e_1_2_8_6_1 – ident: e_1_2_8_11_1 – ident: e_1_2_8_3_1 – ident: e_1_2_8_19_1 doi: 10.1016/j.compositesb.2017.04.017 – ident: e_1_2_8_21_1 doi: 10.1016/j.jiec.2018.06.018 – ident: e_1_2_8_22_1 doi: 10.5028/jatm.v9i3.795 – ident: e_1_2_8_7_1 doi: 10.1121/1.392462 – ident: e_1_2_8_17_1 doi: 10.1016/j.polymer.2010.09.002 – ident: e_1_2_8_9_1 doi: 10.1016/j.porgcoat.2018.04.014 – ident: e_1_2_8_4_1 – ident: e_1_2_8_13_1 – ident: e_1_2_8_5_1 doi: 10.1121/1.386753 – ident: e_1_2_8_2_1 – ident: e_1_2_8_18_1 doi: 10.1002/pen.24505 – ident: e_1_2_8_10_1 doi: 10.1109/EuroSimE.2016.7463339 – ident: e_1_2_8_24_1 doi: 10.1590/S1516-14392003000200013 – ident: e_1_2_8_1_1 doi: 10.1007/978-3-319-39044-4 – start-page: 63 year: 2018 ident: e_1_2_8_16_1 publication-title: Polimery contributor: fullname: Gołofit T. – ident: e_1_2_8_14_1 doi: 10.1016/j.apenergy.2015.10.174 – volume: 22 start-page: 245 year: 2004 ident: e_1_2_8_12_1 publication-title: Mater. Aci‐Poland contributor: fullname: Lima R. C. – ident: e_1_2_8_23_1 doi: 10.1016/0032-3861(85)90216-2 |
SSID | ssj0009971 |
Score | 2.3283944 |
Snippet | Hydroacoustic transducers are devices capable of converting mechanical energy from acoustic waves into electrical energy, and vice versa, through piezoelectric... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Acoustic waves Carbon black Chains Dielectric loss Dielectrics Diffusion barriers elastomeric polyurethanes Elastomers Electric contacts Encapsulation Evaluation Fillers Hardness hydroacoustic transducers Piezoelectricity Polyurethane Polyurethane resins properties Rubber thermal analysis Thermal stability Tightness Transducers Transition temperature Underwater acoustics |
Title | Evaluation of Polyurethane Elastomers for Encapsulation of Hydroacoustic Transducers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmasy.202000083 https://www.proquest.com/docview/2470178639 |
Volume | 394 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BF1j4RhQK8oDEFDWx3cQeq5KqC6hSiwRTZMf2VBLUtEP_PbbTpHRCgi2R7Mg63-XenX3vAB5dtSdVdBBgouKAYs0DZnFDwGKTcKPcYYxPXcyS13f2nDqanLaKv-aHaBNuzjL8_9oZuJBVf0ca-imqjY3vsEc9ju7Thgq-hoNMd6y7vI643JX1iMRhw9oY4v7-9H2vtIOaPwGr9zjj0_-v9QxOtmgTDWv1OIcDXVzA0ahp8nYJ87Rl-0alQdNysVkvtUuna5RaYL0qXV4bWWSL0iIXNqRetIMnG-XKsUrfDwx5p6esoiyrK3gbp_PRJNg2Wghyu1MkkJrbwIlhHdEBN3EkmaSx8GiAuzwOMUxxnRjrycJIEKm4kIQqmWPGZCwEuYZOURb6BhCmmhmhiVY8pDqyY1QuzEDmodImMqwLT42gs6-aTyOrmZNx5qSUtVLqQq_Zh2xrV1WG3QoSZmFVF7CX-C9fyV6Gs4_27fYvk-7g2D3Xd1h60Fkt1_oeDq1IH7y2fQNo_9UT |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7RMpSFN6JQIAMSU9TEdhN7rEqqItqqUosEU-TE9lQS1MfQf4_tNCmdkBBjIjuyzne5786-7wAeTbUnEaTjIiwClyDJXKpxg0sDFTIlzGGMTV1Mw_E7fY4MTU63rIUp-CGqhJuxDPu_NgZuEtLtHWvoJ19udICHLOzBNTgkgdZGU8WBJzveXVbEXObSuo8Dr-Rt9FB7f_6-X9qBzZ-Q1fqc_sk_rPYUjreA0-kWGnIGBzI7h0av7PN2AbOoIvx2cuVM8vlmvZAmoy6dSGPrVW5S244Gt06UpVxH1fNq8GAjTEVWbluCOdbvCa0ri-UlvPWjWW_gbnstuKneLOwmkunYiSLpkw5TgZ_QhATcAgJmUjlYUcFkqLQz83yOE8F4golIUkRpEnCOr6Ce5Zm8BgcRSRWXWArmEenrMSLlqpOknpDKV7QJT6Wk46-CUiMuyJNRbKQUV1JqQqvciHhrWssYmRWEVCOrJiAr8l--Eo-604_q6eYvkx6gMZiNhvHwZfx6C0fmfXGlpQX11WIt76CmxXtvVe8b8xPZOw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RIgELb0ShQAYkpqiJ7Sb2WLWpioCqUosEU-TE9lSSqo-h_x7baVI6IcGYyI6s813uu7PvO4BHU-1JBGm7CIvAJUgyl2rc4NJAhUwJcxhjUxfjcPhBe5Ghyamq-At-iCrhZizD_q-Ngc-Eam1JQ7_4Yq3jO2RRD67BPtFY3LDnYzza0u6yIuQyd9Z9HHglbaOHWrvzd93SFmv-RKzW5fRP_r_YUzjewE2nU-jHGezJ7BwOu2WXtwuYRBXdt5MrZ5RP16u5NPl06UQaWS9zk9h2NLR1oizlOqaeVoMHa2HqsXLbEMyxXk9oTZkvLuG9H026A3fTacFN9VZhN5FMR04USZ-0mQr8hCYk4BYOMJPIwYoKJkOlXZnnc5wIxhNMRJIiSpOAc3wF9SzP5DU4iEiquMRSMI9IX48RKVftJPWEVL6iDXgqBR3PCkKNuKBORrGRUlxJqQHNch_ijWEtYmRWEFKNqxqArMR_-Ur81hl_Vk83f5n0AAejXj9-fR6-3MKReV3cZ2lCfTlfyTuoaeneW8X7Bmt01-E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Polyurethane+Elastomers+for+Encapsulation+of+Hydroacoustic+Transducers&rft.jtitle=Macromolecular+symposia.&rft.au=Lemos%2C+Maur%C3%ADcio+F.&rft.au=Lima%2C+Roberto+da+C.&rft.au=Cunha%2C+Rodrigo+H.&rft.au=Santos%2C+Jonas+F.&rft.date=2020-12-01&rft.issn=1022-1360&rft.eissn=1521-3900&rft.volume=394&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmasy.202000083&rft.externalDBID=10.1002%252Fmasy.202000083&rft.externalDocID=MASY202000083 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1360&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1360&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1360&client=summon |