Evaluation of Polyurethane Elastomers for Encapsulation of Hydroacoustic Transducers

Hydroacoustic transducers are devices capable of converting mechanical energy from acoustic waves into electrical energy, and vice versa, through piezoelectric elements connected to electronics that need to be protected from contact with the water. This tightness is provided by the encapsulation of...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular symposia. Vol. 394; no. 1
Main Authors: Lemos, Maurício F., Lima, Roberto da C., Cunha, Rodrigo H., Santos, Jonas F.
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01-12-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hydroacoustic transducers are devices capable of converting mechanical energy from acoustic waves into electrical energy, and vice versa, through piezoelectric elements connected to electronics that need to be protected from contact with the water. This tightness is provided by the encapsulation of the transducers with elastomers. The use of fillers and chain extenders are known to promote a barrier for water diffusion, but it would inevitably change the other properties of the elastomer. Thus, this work aims to evaluate the effects of filler and chain extender addition on the properties of polyurethane elastomers (PUR) for this application. Thermogravimetric, thermomechanical, glass‐rubber transition temperature, hardness, and dielectric loss analyses are performed. It is observed an increase in the dielectric loss, hardness, and thermal stability with the addition of mineral fillers and carbon black. The addition of chain extender promoted a greater hardness in the final elastomer, but has no measurable effects on the dielectric loss, and decreased the thermal and dimension stability with temperature. Glass‐rubber transition temperatures remain in the range from –78 to –80 °C, which is in the acceptable range for the application as encapsulants.
AbstractList Hydroacoustic transducers are devices capable of converting mechanical energy from acoustic waves into electrical energy, and vice versa, through piezoelectric elements connected to electronics that need to be protected from contact with the water. This tightness is provided by the encapsulation of the transducers with elastomers. The use of fillers and chain extenders are known to promote a barrier for water diffusion, but it would inevitably change the other properties of the elastomer. Thus, this work aims to evaluate the effects of filler and chain extender addition on the properties of polyurethane elastomers (PUR) for this application. Thermogravimetric, thermomechanical, glass‐rubber transition temperature, hardness, and dielectric loss analyses are performed. It is observed an increase in the dielectric loss, hardness, and thermal stability with the addition of mineral fillers and carbon black. The addition of chain extender promoted a greater hardness in the final elastomer, but has no measurable effects on the dielectric loss, and decreased the thermal and dimension stability with temperature. Glass‐rubber transition temperatures remain in the range from –78 to –80 °C, which is in the acceptable range for the application as encapsulants.
Hydroacoustic transducers are devices capable of converting mechanical energy from acoustic waves into electrical energy, and vice versa, through piezoelectric elements connected to electronics that need to be protected from contact with the water. This tightness is provided by the encapsulation of the transducers with elastomers. The use of fillers and chain extenders are known to promote a barrier for water diffusion, but it would inevitably change the other properties of the elastomer. Thus, this work aims to evaluate the effects of filler and chain extender addition on the properties of polyurethane elastomers (PUR) for this application. Thermogravimetric, thermomechanical, glass‐rubber transition temperature, hardness, and dielectric loss analyses are performed. It is observed an increase in the dielectric loss, hardness, and thermal stability with the addition of mineral fillers and carbon black. The addition of chain extender promoted a greater hardness in the final elastomer, but has no measurable effects on the dielectric loss, and decreased the thermal and dimension stability with temperature. Glass‐rubber transition temperatures remain in the range from –78 to –80 °C, which is in the acceptable range for the application as encapsulants.
Author Lemos, Maurício F.
Lima, Roberto da C.
Santos, Jonas F.
Cunha, Rodrigo H.
Author_xml – sequence: 1
  givenname: Maurício F.
  surname: Lemos
  fullname: Lemos, Maurício F.
  email: mauricio.lemos@marinha.mil.br
  organization: Instituto de Pesquisas da Marinha (IPqM)
– sequence: 2
  givenname: Roberto da C.
  surname: Lima
  fullname: Lima, Roberto da C.
  organization: Instituto de Pesquisas da Marinha (IPqM)
– sequence: 3
  givenname: Rodrigo H.
  surname: Cunha
  fullname: Cunha, Rodrigo H.
  organization: Instituto de Pesquisas da Marinha (IPqM)
– sequence: 4
  givenname: Jonas F.
  surname: Santos
  fullname: Santos, Jonas F.
  organization: Instituto de Pesquisas da Marinha (IPqM)
BookMark eNqFkE1LAzEQhoNUsK1ePS943pqP_UiOpaxWUBSsB09hkk1wyzapya6y_94tlXp0Lu8cnmcG3hmaOO8MQtcELwjG9HYHcVhQTPE4nJ2hKckpSZnAeDLumNKUsAJfoFmM2xERoiRTtKm-oO2ha7xLvE1efDv0wXQf4ExStRA7vzMhJtaHpHIa9rFvT_B6qIMH7fvYNTrZBHCx7vWIX6JzC200V785R2931Wa1Th-f7x9Wy8dUszxjqTKC8pJTQ7Jc2IIorrICMCU5EVhgxiyvhSktz0pMgKlagGJZrTTlXBUAbI5ujnf3wX_2JnZy6_vgxpeSHpySF0yM1OJI6eBjDMbKfWh2EAZJsDw0Jw_NyVNzoyCOwnfTmuEfWj4tX9__3B8ZwXTm
CitedBy_id crossref_primary_10_1016_j_mtcomm_2022_103476
crossref_primary_10_1002_pen_26056
crossref_primary_10_1088_1742_6596_2680_1_012032
crossref_primary_10_3390_polym13132150
Cites_doi 10.1007/s00289-009-0242-9
10.3390/molecules23102515
10.1002/pc.23351
10.1016/j.matdes.2015.08.049
10.1016/j.compositesb.2017.04.017
10.1016/j.jiec.2018.06.018
10.5028/jatm.v9i3.795
10.1121/1.392462
10.1016/j.polymer.2010.09.002
10.1016/j.porgcoat.2018.04.014
10.1121/1.386753
10.1002/pen.24505
10.1109/EuroSimE.2016.7463339
10.1590/S1516-14392003000200013
10.1007/978-3-319-39044-4
10.1016/j.apenergy.2015.10.174
10.1016/0032-3861(85)90216-2
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/masy.202000083
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3900
EndPage n/a
ExternalDocumentID 10_1002_masy_202000083
MASY202000083
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
H~9
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NNB
O66
OIG
P2P
P2W
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RDN
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZE2
ZZTAW
~IA
~KM
~WT
AAMNL
AAYXX
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c3543-be928782e1459f61b8b46a02151909033f8d9e7f84701a3bd9ab34dbc288b6aa3
IEDL.DBID 33P
ISSN 1022-1360
IngestDate Thu Oct 10 19:12:47 EDT 2024
Thu Nov 21 23:04:09 EST 2024
Sat Aug 24 01:05:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3543-be928782e1459f61b8b46a02151909033f8d9e7f84701a3bd9ab34dbc288b6aa3
PQID 2470178639
PQPubID 2034342
PageCount 5
ParticipantIDs proquest_journals_2470178639
crossref_primary_10_1002_masy_202000083
wiley_primary_10_1002_masy_202000083_MASY202000083
PublicationCentury 2000
PublicationDate December 2020
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Macromolecular symposia.
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 22
2010; 65
1981; 70
2003; 6
2018; 123
2017; 57
2015; 87
1998
2007
2018
1995
2016
1993
2017; 122
2018; 23
2018; 67
1985; 78
2016; 37
2017; 9
1985; 26
2010; 51
2016; 162
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
Lima R. C. (e_1_2_8_12_1) 2004; 22
e_1_2_8_15_1
e_1_2_8_10_1
e_1_2_8_11_1
Gołofit T. (e_1_2_8_16_1) 2018
References_xml – volume: 87
  start-page: 324
  year: 2015
  publication-title: Mater. Des.
– volume: 78
  start-page: 406
  year: 1985
  publication-title: J. Acoust. Soc. Am.
– volume: 123
  start-page: 238
  year: 2018
  publication-title: Prog. Org. Coat.
– volume: 22
  start-page: 245
  year: 2004
  publication-title: Mater. Aci‐Poland
– volume: 6
  start-page: 187
  year: 2003
  publication-title: Mater. Res.
– volume: 162
  start-page: 1024
  year: 2016
  publication-title: Appl. Energy
– year: 2007
– volume: 51
  start-page: 5186
  year: 2010
  publication-title: Polymer
– volume: 37
  start-page: 1786
  year: 2016
  publication-title: Polym. Compos.
– volume: 23
  start-page: 2515
  year: 2018
  publication-title: Molecules
– year: 1995
– volume: 70
  start-page: 622
  year: 1981
  publication-title: J. Acoust. Soc. Am.
– volume: 122
  start-page: 192
  year: 2017
  publication-title: Composites, Part B
– year: 2016
– start-page: 63
  year: 2018
  publication-title: Polimery
– year: 1993
– volume: 65
  start-page: 753
  year: 2010
  publication-title: Polym. Bull.
– volume: 67
  start-page: 1
  year: 2018
  publication-title: J. Ind. Eng. Chem.
– volume: 9
  start-page: 379
  year: 2017
  publication-title: J. Aerosp. Technol. Manag.
– volume: 26
  start-page: 963
  year: 1985
  publication-title: Polymer
– year: 1998
– volume: 57
  start-page: 1242
  year: 2017
  publication-title: Polym. Eng. Sci.
– ident: e_1_2_8_25_1
  doi: 10.1007/s00289-009-0242-9
– ident: e_1_2_8_20_1
  doi: 10.3390/molecules23102515
– ident: e_1_2_8_8_1
  doi: 10.1002/pc.23351
– ident: e_1_2_8_15_1
  doi: 10.1016/j.matdes.2015.08.049
– ident: e_1_2_8_6_1
– ident: e_1_2_8_11_1
– ident: e_1_2_8_3_1
– ident: e_1_2_8_19_1
  doi: 10.1016/j.compositesb.2017.04.017
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jiec.2018.06.018
– ident: e_1_2_8_22_1
  doi: 10.5028/jatm.v9i3.795
– ident: e_1_2_8_7_1
  doi: 10.1121/1.392462
– ident: e_1_2_8_17_1
  doi: 10.1016/j.polymer.2010.09.002
– ident: e_1_2_8_9_1
  doi: 10.1016/j.porgcoat.2018.04.014
– ident: e_1_2_8_4_1
– ident: e_1_2_8_13_1
– ident: e_1_2_8_5_1
  doi: 10.1121/1.386753
– ident: e_1_2_8_2_1
– ident: e_1_2_8_18_1
  doi: 10.1002/pen.24505
– ident: e_1_2_8_10_1
  doi: 10.1109/EuroSimE.2016.7463339
– ident: e_1_2_8_24_1
  doi: 10.1590/S1516-14392003000200013
– ident: e_1_2_8_1_1
  doi: 10.1007/978-3-319-39044-4
– start-page: 63
  year: 2018
  ident: e_1_2_8_16_1
  publication-title: Polimery
  contributor:
    fullname: Gołofit T.
– ident: e_1_2_8_14_1
  doi: 10.1016/j.apenergy.2015.10.174
– volume: 22
  start-page: 245
  year: 2004
  ident: e_1_2_8_12_1
  publication-title: Mater. Aci‐Poland
  contributor:
    fullname: Lima R. C.
– ident: e_1_2_8_23_1
  doi: 10.1016/0032-3861(85)90216-2
SSID ssj0009971
Score 2.3283944
Snippet Hydroacoustic transducers are devices capable of converting mechanical energy from acoustic waves into electrical energy, and vice versa, through piezoelectric...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Acoustic waves
Carbon black
Chains
Dielectric loss
Dielectrics
Diffusion barriers
elastomeric polyurethanes
Elastomers
Electric contacts
Encapsulation
Evaluation
Fillers
Hardness
hydroacoustic transducers
Piezoelectricity
Polyurethane
Polyurethane resins
properties
Rubber
thermal analysis
Thermal stability
Tightness
Transducers
Transition temperature
Underwater acoustics
Title Evaluation of Polyurethane Elastomers for Encapsulation of Hydroacoustic Transducers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmasy.202000083
https://www.proquest.com/docview/2470178639
Volume 394
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BF1j4RhQK8oDEFDWx3cQeq5KqC6hSiwRTZMf2VBLUtEP_PbbTpHRCgi2R7Mg63-XenX3vAB5dtSdVdBBgouKAYs0DZnFDwGKTcKPcYYxPXcyS13f2nDqanLaKv-aHaBNuzjL8_9oZuJBVf0ca-imqjY3vsEc9ju7Thgq-hoNMd6y7vI643JX1iMRhw9oY4v7-9H2vtIOaPwGr9zjj0_-v9QxOtmgTDWv1OIcDXVzA0ahp8nYJ87Rl-0alQdNysVkvtUuna5RaYL0qXV4bWWSL0iIXNqRetIMnG-XKsUrfDwx5p6esoiyrK3gbp_PRJNg2Wghyu1MkkJrbwIlhHdEBN3EkmaSx8GiAuzwOMUxxnRjrycJIEKm4kIQqmWPGZCwEuYZOURb6BhCmmhmhiVY8pDqyY1QuzEDmodImMqwLT42gs6-aTyOrmZNx5qSUtVLqQq_Zh2xrV1WG3QoSZmFVF7CX-C9fyV6Gs4_27fYvk-7g2D3Xd1h60Fkt1_oeDq1IH7y2fQNo_9UT
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7RMpSFN6JQIAMSU9TEdhN7rEqqItqqUosEU-TE9lQS1MfQf4_tNCmdkBBjIjuyzne5786-7wAeTbUnEaTjIiwClyDJXKpxg0sDFTIlzGGMTV1Mw_E7fY4MTU63rIUp-CGqhJuxDPu_NgZuEtLtHWvoJ19udICHLOzBNTgkgdZGU8WBJzveXVbEXObSuo8Dr-Rt9FB7f_6-X9qBzZ-Q1fqc_sk_rPYUjreA0-kWGnIGBzI7h0av7PN2AbOoIvx2cuVM8vlmvZAmoy6dSGPrVW5S244Gt06UpVxH1fNq8GAjTEVWbluCOdbvCa0ri-UlvPWjWW_gbnstuKneLOwmkunYiSLpkw5TgZ_QhATcAgJmUjlYUcFkqLQz83yOE8F4golIUkRpEnCOr6Ce5Zm8BgcRSRWXWArmEenrMSLlqpOknpDKV7QJT6Wk46-CUiMuyJNRbKQUV1JqQqvciHhrWssYmRWEVCOrJiAr8l--Eo-604_q6eYvkx6gMZiNhvHwZfx6C0fmfXGlpQX11WIt76CmxXtvVe8b8xPZOw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RIgELb0ShQAYkpqiJ7Sb2WLWpioCqUosEU-TE9lSSqo-h_x7baVI6IcGYyI6s813uu7PvO4BHU-1JBGm7CIvAJUgyl2rc4NJAhUwJcxhjUxfjcPhBe5Ghyamq-At-iCrhZizD_q-Ngc-Eam1JQ7_4Yq3jO2RRD67BPtFY3LDnYzza0u6yIuQyd9Z9HHglbaOHWrvzd93SFmv-RKzW5fRP_r_YUzjewE2nU-jHGezJ7BwOu2WXtwuYRBXdt5MrZ5RP16u5NPl06UQaWS9zk9h2NLR1oizlOqaeVoMHa2HqsXLbEMyxXk9oTZkvLuG9H026A3fTacFN9VZhN5FMR04USZ-0mQr8hCYk4BYOMJPIwYoKJkOlXZnnc5wIxhNMRJIiSpOAc3wF9SzP5DU4iEiquMRSMI9IX48RKVftJPWEVL6iDXgqBR3PCkKNuKBORrGRUlxJqQHNch_ijWEtYmRWEFKNqxqArMR_-Ur81hl_Vk83f5n0AAejXj9-fR6-3MKReV3cZ2lCfTlfyTuoaeneW8X7Bmt01-E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Polyurethane+Elastomers+for+Encapsulation+of+Hydroacoustic+Transducers&rft.jtitle=Macromolecular+symposia.&rft.au=Lemos%2C+Maur%C3%ADcio+F.&rft.au=Lima%2C+Roberto+da+C.&rft.au=Cunha%2C+Rodrigo+H.&rft.au=Santos%2C+Jonas+F.&rft.date=2020-12-01&rft.issn=1022-1360&rft.eissn=1521-3900&rft.volume=394&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmasy.202000083&rft.externalDBID=10.1002%252Fmasy.202000083&rft.externalDocID=MASY202000083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1360&client=summon