Synthesis of Polymeric Matrices for Adsorption and Purification of Endoglucanase

Chitosan (CHS), chitosan–Eudragit® EPO (CHS–EPO) and chitosan beads partially cross-linked with glutaraldehyde (CHS–GLUT) were obtained in order to improve the adsorption selectivity of endoglucanase from a fungal culture obtained under SSF by Aspergillus niger using soybean harvest residues as supp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymers and the environment Vol. 26; no. 12; pp. 4321 - 4330
Main Authors: Boggione, María Julia, Zilli, María Paula, Allasia, María Belén, Farruggia, Beatriz
Format: Journal Article
Language:English
Published: New York Springer US 01-12-2018
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chitosan (CHS), chitosan–Eudragit® EPO (CHS–EPO) and chitosan beads partially cross-linked with glutaraldehyde (CHS–GLUT) were obtained in order to improve the adsorption selectivity of endoglucanase from a fungal culture obtained under SSF by Aspergillus niger using soybean harvest residues as support. The matrices synthetized were characterized in terms of physical and chemical changes. Fourier-transformed infrared spectroscopy with attenuated total reflectance device (FTIR-ATR) was employed to verify the chemical changes on the CHS matrix after the synthesis of CHS–GLUT and CHS–EPO. Scanning electron microscopy (SEM) was performed to compare the surface morphology of the polymeric beads. Two variables, purification factor and yield percentage of the adsorption process, were analyzed using a bifactorial ANOVA considering the matrix–time first order interaction. SEM results exhibited greater surface roughness in the CHS–GLUT and CHS–EPO matrices which may enhance endoglucanase adsorption. FTIR-ATR results confirmed an effective chemical modification of the CHS matrix after crosslinking with GLUT and corroborated the efficiency of the synthesis of the CHS–EPO matrix by the presence of chemical groups of the EPO polymer. An endoglucanase purification factor close to 9 was achieved with the CHS–GLUT matrix and a yield percentage of 60% was obtained with the CHS–EPO matrix. Bifactorial ANOVA results showed the matrix–time interaction to be significant for both variables. The CHS–GLUT matrix with low crosslinking times and the novel CHS–EPO matrix could be included in the bioseparation stage of endoglucanase using a simple and a low-cost method such as batch adsorption.
ISSN:1566-2543
1572-8919
DOI:10.1007/s10924-018-1303-7