Predicting ICU Mortality in Acute Respiratory Distress Syndrome Patients Using Machine Learning: The Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Study

To assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with acute respiratory distress syndrome (ARDS). A development, testing, and external validation study using clinical data from four prospective, multicenter,...

Full description

Saved in:
Bibliographic Details
Published in:Critical care medicine Vol. 51; no. 12; pp. 1638 - 1649
Main Authors: Villar, Jesús, González-Martín, Jesús M, Hernández-González, Jerónimo, Armengol, Miguel A, Fernández, Cristina, Martín-Rodríguez, Carmen, Mosteiro, Fernando, Martínez, Domingo, Sánchez-Ballesteros, Jesús, Ferrando, Carlos, Domínguez-Berrot, Ana M, Añón, José M, Parra, Laura, Montiel, Raquel, Solano, Rosario, Robaglia, Denis, Rodríguez-Suárez, Pedro, Gómez-Bentolila, Estrella, Fernández, Rosa L, Szakmany, Tamas, Steyerberg, Ewout W, Slutsky, Arthur S
Format: Journal Article
Language:English
Published: United States 01-12-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with acute respiratory distress syndrome (ARDS). A development, testing, and external validation study using clinical data from four prospective, multicenter, observational cohorts. A network of multidisciplinary ICUs. A total of 1,303 patients with moderate-to-severe ARDS managed with lung-protective ventilation. None. We developed and tested prediction models in 1,000 ARDS patients. We performed logistic regression analysis following variable selection by a genetic algorithm, random forest and extreme gradient boosting machine learning techniques. Potential predictors included demographics, comorbidities, ventilatory and oxygenation descriptors, and extrapulmonary organ failures. Risk modeling identified some major prognostic factors for ICU mortality, including age, cancer, immunosuppression, Pa o2 /F io2 , inspiratory plateau pressure, and number of extrapulmonary organ failures. Together, these characteristics contained most of the prognostic information in the first 24 hours to predict ICU mortality. Performance with machine learning methods was similar to logistic regression (area under the receiver operating characteristic curve [AUC], 0.87; 95% CI, 0.82-0.91). External validation in an independent cohort of 303 ARDS patients confirmed that the performance of the model was similar to a logistic regression model (AUC, 0.91; 95% CI, 0.87-0.94). Both machine learning and traditional methods lead to promising models to predict ICU death in moderate/severe ARDS patients. More research is needed to identify markers for severity beyond clinical determinants, such as demographics, comorbidities, lung mechanics, oxygenation, and extrapulmonary organ failure to guide patient management.
AbstractList OBJECTIVESTo assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with acute respiratory distress syndrome (ARDS).DESIGNA development, testing, and external validation study using clinical data from four prospective, multicenter, observational cohorts.SETTINGA network of multidisciplinary ICUs.PATIENTSA total of 1,303 patients with moderate-to-severe ARDS managed with lung-protective ventilation.INTERVENTIONSNone.MEASUREMENTS AND MAIN RESULTSWe developed and tested prediction models in 1,000 ARDS patients. We performed logistic regression analysis following variable selection by a genetic algorithm, random forest and extreme gradient boosting machine learning techniques. Potential predictors included demographics, comorbidities, ventilatory and oxygenation descriptors, and extrapulmonary organ failures. Risk modeling identified some major prognostic factors for ICU mortality, including age, cancer, immunosuppression, Pa o2 /F io2 , inspiratory plateau pressure, and number of extrapulmonary organ failures. Together, these characteristics contained most of the prognostic information in the first 24 hours to predict ICU mortality. Performance with machine learning methods was similar to logistic regression (area under the receiver operating characteristic curve [AUC], 0.87; 95% CI, 0.82-0.91). External validation in an independent cohort of 303 ARDS patients confirmed that the performance of the model was similar to a logistic regression model (AUC, 0.91; 95% CI, 0.87-0.94).CONCLUSIONSBoth machine learning and traditional methods lead to promising models to predict ICU death in moderate/severe ARDS patients. More research is needed to identify markers for severity beyond clinical determinants, such as demographics, comorbidities, lung mechanics, oxygenation, and extrapulmonary organ failure to guide patient management.
To assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with acute respiratory distress syndrome (ARDS). A development, testing, and external validation study using clinical data from four prospective, multicenter, observational cohorts. A network of multidisciplinary ICUs. A total of 1,303 patients with moderate-to-severe ARDS managed with lung-protective ventilation. None. We developed and tested prediction models in 1,000 ARDS patients. We performed logistic regression analysis following variable selection by a genetic algorithm, random forest and extreme gradient boosting machine learning techniques. Potential predictors included demographics, comorbidities, ventilatory and oxygenation descriptors, and extrapulmonary organ failures. Risk modeling identified some major prognostic factors for ICU mortality, including age, cancer, immunosuppression, Pa o2 /F io2 , inspiratory plateau pressure, and number of extrapulmonary organ failures. Together, these characteristics contained most of the prognostic information in the first 24 hours to predict ICU mortality. Performance with machine learning methods was similar to logistic regression (area under the receiver operating characteristic curve [AUC], 0.87; 95% CI, 0.82-0.91). External validation in an independent cohort of 303 ARDS patients confirmed that the performance of the model was similar to a logistic regression model (AUC, 0.91; 95% CI, 0.87-0.94). Both machine learning and traditional methods lead to promising models to predict ICU death in moderate/severe ARDS patients. More research is needed to identify markers for severity beyond clinical determinants, such as demographics, comorbidities, lung mechanics, oxygenation, and extrapulmonary organ failure to guide patient management.
Author Villar, Jesús
Robaglia, Denis
Hernández-González, Jerónimo
Steyerberg, Ewout W
Rodríguez-Suárez, Pedro
Slutsky, Arthur S
Martín-Rodríguez, Carmen
Domínguez-Berrot, Ana M
Szakmany, Tamas
Solano, Rosario
González-Martín, Jesús M
Gómez-Bentolila, Estrella
Martínez, Domingo
Montiel, Raquel
Fernández, Rosa L
Ferrando, Carlos
Mosteiro, Fernando
Sánchez-Ballesteros, Jesús
Añón, José M
Armengol, Miguel A
Fernández, Cristina
Parra, Laura
Author_xml – sequence: 1
  givenname: Jesús
  surname: Villar
  fullname: Villar, Jesús
  organization: Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, ON, Canada
– sequence: 2
  givenname: Jesús M
  surname: González-Martín
  fullname: González-Martín, Jesús M
  organization: Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
– sequence: 3
  givenname: Jerónimo
  surname: Hernández-González
  fullname: Hernández-González, Jerónimo
  organization: Departament de Matemàtiques i Informàtica, Universitat de Barcelona (UB), Barcelona, Spain
– sequence: 4
  givenname: Miguel A
  surname: Armengol
  fullname: Armengol, Miguel A
  organization: Big Data Department, PMC-FPS, Regional Ministry of Health and Consumer Affairs, Sevilla, Spain
– sequence: 5
  givenname: Cristina
  surname: Fernández
  fullname: Fernández, Cristina
  organization: Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
– sequence: 6
  givenname: Carmen
  surname: Martín-Rodríguez
  fullname: Martín-Rodríguez, Carmen
  organization: Intensive Care Unit, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
– sequence: 7
  givenname: Fernando
  surname: Mosteiro
  fullname: Mosteiro, Fernando
  organization: Intensive Care Unit, Hospital Universitario de A Coruña, La Coruña, Spain
– sequence: 8
  givenname: Domingo
  surname: Martínez
  fullname: Martínez, Domingo
  organization: Intensive Care Unit, Hospital Universitario Virgen de Arrixaca, Murcia, Spain
– sequence: 9
  givenname: Jesús
  surname: Sánchez-Ballesteros
  fullname: Sánchez-Ballesteros, Jesús
  organization: Intensive Care Unit, Hospital Universitario Río Hortega, Valladolid, Spain
– sequence: 10
  givenname: Carlos
  surname: Ferrando
  fullname: Ferrando, Carlos
  organization: Surgical Intensive Care Unit, Department of Anesthesia, Hospital Clinic, IDIBAPS, Barcelona, Spain
– sequence: 11
  givenname: Ana M
  surname: Domínguez-Berrot
  fullname: Domínguez-Berrot, Ana M
  organization: Intensive Care Unit, Complejo Asistencial Universitario de León, León, Spain
– sequence: 12
  givenname: José M
  surname: Añón
  fullname: Añón, José M
  organization: Intensive Care Unit, Hospital Universitario La Paz, IdiPaz, Madrid, Spain
– sequence: 13
  givenname: Laura
  surname: Parra
  fullname: Parra, Laura
  organization: Intensive Care Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
– sequence: 14
  givenname: Raquel
  surname: Montiel
  fullname: Montiel, Raquel
  organization: Intensive Care Unit, Hospital Universitario NS de Candelaria, Santa Cruz de Tenerife, Spain
– sequence: 15
  givenname: Rosario
  surname: Solano
  fullname: Solano, Rosario
  organization: Intensive Care Unit, Hospital Virgen de La Luz, Cuenca, Spain
– sequence: 16
  givenname: Denis
  surname: Robaglia
  fullname: Robaglia, Denis
  organization: Intensive Care Unit, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
– sequence: 17
  givenname: Pedro
  surname: Rodríguez-Suárez
  fullname: Rodríguez-Suárez, Pedro
  organization: Thoracic Surgery, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
– sequence: 18
  givenname: Estrella
  surname: Gómez-Bentolila
  fullname: Gómez-Bentolila, Estrella
  organization: Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
– sequence: 19
  givenname: Rosa L
  surname: Fernández
  fullname: Fernández, Rosa L
  organization: Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
– sequence: 20
  givenname: Tamas
  surname: Szakmany
  fullname: Szakmany, Tamas
  organization: Cardiff University, Cardiff, United Kingdom
– sequence: 21
  givenname: Ewout W
  surname: Steyerberg
  fullname: Steyerberg, Ewout W
  organization: Department Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
– sequence: 22
  givenname: Arthur S
  surname: Slutsky
  fullname: Slutsky, Arthur S
  organization: Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37651262$$D View this record in MEDLINE/PubMed
BookMark eNpdUctu2zAQJIoUjZP2D4qAx-SgdCmKlNRboDQPwIaNyD4LNLVqGNikS1IB9Ff9xEhI0hbdw-5gMY_DnJAj6ywS8pXBJYMy_1ZVi0v4ZyRw-EBmTHBIIC35EZkBlJDwrOTH5CSEJwCWiZx_Isc8l4KlMp2R3yuPrdHR2J_0vtrQhfNR7UwcqLH0SvcR6QOGg_EqOj_QaxOixxBoPdjWuz3SlYoGbQx0EyaPhdKPxiKdo_J2fHyn68eR9Ddk2Uc96ZRtab0ebU1nqnE7S11HAz6jf09_uK7p-WpZr6sJXtA69u3wmXzs1C7gl7d7SjY3P9bVXTJf3t5XV_NEc8Fj0nZMMGBdDkoKnjKNrMhkBhIxhxwzvW2LbCtKxuQIWMdarUCIEgop8iIFfkrOX30P3v3qMcRmb4LG3U5ZdH1o0kJCNinKkZq9UrV3IXjsmoM3e-WHhkEzddWMXTX_dzXKzt4S-u0e2z-i93L4C6H4kNM
CitedBy_id crossref_primary_10_1097_CCM_0000000000006115
crossref_primary_10_3390_jcm13061811
crossref_primary_10_1186_s13054_023_04699_w
crossref_primary_10_1186_s40560_023_00707_x
crossref_primary_10_1186_s12890_023_02736_6
crossref_primary_10_1097_CCM_0000000000006084
crossref_primary_10_1097_CCM_0000000000006061
Cites_doi 10.18637/jss.v053.i04
10.1097/CCM.0000000000003022
10.1513/AnnalsATS.201706-449KV
10.1152/jappl.1990.69.3.822
10.4187/respcare.06165
10.1056/NEJMoa1800385
10.1097/CCM.0000000000005142
10.1097/MCC.0000000000000378
10.1056/NEJM200005043421801
10.1164/rccm.200610-1534OC
10.1056/NEJMoa1214103
10.1007/s00134-021-06370-w
10.1016/j.jclinepi.2014.11.010
10.1164/ajrccm.173.6.686
10.1186/s13054-020-2785-y
10.1016/j.jclinepi.2015.12.005
10.1097/EDE.0b013e3181c30fb2
10.3389/fphys.2021.774025
10.1016/S2213-2600(14)70239-5
10.1097/00003246-198510000-00009
10.1016/j.jcrc.2013.10.011
10.1093/jamia/ocaa294
10.1183/09031936.97.10061297
10.1038/s41591-022-01843-x
10.1016/j.jclinepi.2004.06.017
10.1037/a0027127
10.1007/s00134-020-06306-w
10.21037/atm-20-6624
10.1056/NEJMoa1901686
10.1016/j.artmed.2022.102361
10.1186/s13054-021-03566-w
10.1097/CCM.0000000000002330
10.1007/s00134-011-2380-4
10.1097/CCM.0000000000004246
10.1001/jama.2018.1536
10.1097/CCE.0000000000000684
10.1017/S0140525X01003922
10.1186/s12967-019-2075-0
10.1097/00003246-199811000-00016
10.1007/s00134-012-2803-x
10.1136/bmjopen-2014-006812
10.1016/S2213-2600(18)30098-5
10.1016/S2213-2600(19)30417-5
10.1097/CCM.0000000000001653
10.1007/s00134-020-06000-x
10.1097/CCM.0000000000002936
10.1093/eurheartj/ehu207
ContentType Journal Article
Contributor Capilla, Lucia
Arrojo, Regina
Soro, Marina
Hornos-López, Carmen
Aldecoa, César
Conesa-Cayuela, Luís A
Del Saz-Ortiz, Ana M
Pérez, César
Domínguez, Ana M
Peinado, Eduardo
Parrilla, Dácil
Aguilar, Gerardo
Muriel, Arturo
Díaz-Domínguez, Francisco J
Hernández, Mónica
Belda, Javier
Soler, Juan A
Rico-Feijoo, Jesús
Blanco-Schweizer, Pablo
Martín-Alfonso, Silvia
González-Higueras, Elena
Blanco, Jesús
Bueno-González, Ana
Pérez, Alba
Nogales, Leonor
Kacmarek, Robert M
Fernández, Lorena
Civantos, Belén
Vidal, Anxela
González-Luengo, Raúl I
Andaluz, David
Ambrós, Alfonso
Del Campo, Rafael
Carriedo, Demetrio
Díaz-Lamas, Ana M
Pérez-Méndez, Lina
Ferrando, Carlos
Gutiérrez, Andrea
Pita-García, Lidia
Contributor_xml – sequence: 1
  givenname: Alfonso
  surname: Ambrós
  fullname: Ambrós, Alfonso
– sequence: 2
  givenname: Rafael
  surname: Del Campo
  fullname: Del Campo, Rafael
– sequence: 3
  givenname: Ana
  surname: Bueno-González
  fullname: Bueno-González, Ana
– sequence: 4
  givenname: Carmen
  surname: Hornos-López
  fullname: Hornos-López, Carmen
– sequence: 5
  givenname: Lidia
  surname: Pita-García
  fullname: Pita-García, Lidia
– sequence: 6
  givenname: Ana M
  surname: Díaz-Lamas
  fullname: Díaz-Lamas, Ana M
– sequence: 7
  givenname: Regina
  surname: Arrojo
  fullname: Arrojo, Regina
– sequence: 8
  givenname: Juan A
  surname: Soler
  fullname: Soler, Juan A
– sequence: 9
  givenname: Luís A
  surname: Conesa-Cayuela
  fullname: Conesa-Cayuela, Luís A
– sequence: 10
  givenname: Ana M
  surname: Del Saz-Ortiz
  fullname: Del Saz-Ortiz, Ana M
– sequence: 11
  givenname: Lucia
  surname: Capilla
  fullname: Capilla, Lucia
– sequence: 12
  givenname: Lorena
  surname: Fernández
  fullname: Fernández, Lorena
– sequence: 13
  givenname: Jesús
  surname: Blanco
  fullname: Blanco, Jesús
– sequence: 14
  givenname: Arturo
  surname: Muriel
  fullname: Muriel, Arturo
– sequence: 15
  givenname: Pablo
  surname: Blanco-Schweizer
  fullname: Blanco-Schweizer, Pablo
– sequence: 16
  givenname: César
  surname: Aldecoa
  fullname: Aldecoa, César
– sequence: 17
  givenname: Jesús
  surname: Rico-Feijoo
  fullname: Rico-Feijoo, Jesús
– sequence: 18
  givenname: Alba
  surname: Pérez
  fullname: Pérez, Alba
– sequence: 19
  givenname: Silvia
  surname: Martín-Alfonso
  fullname: Martín-Alfonso, Silvia
– sequence: 20
  givenname: Ana M
  surname: Domínguez
  fullname: Domínguez, Ana M
– sequence: 21
  givenname: Francisco J
  surname: Díaz-Domínguez
  fullname: Díaz-Domínguez, Francisco J
– sequence: 22
  givenname: Raúl I
  surname: González-Luengo
  fullname: González-Luengo, Raúl I
– sequence: 23
  givenname: Demetrio
  surname: Carriedo
  fullname: Carriedo, Demetrio
– sequence: 24
  givenname: Marina
  surname: Soro
  fullname: Soro, Marina
– sequence: 25
  givenname: Javier
  surname: Belda
  fullname: Belda, Javier
– sequence: 26
  givenname: Andrea
  surname: Gutiérrez
  fullname: Gutiérrez, Andrea
– sequence: 27
  givenname: Gerardo
  surname: Aguilar
  fullname: Aguilar, Gerardo
– sequence: 28
  givenname: Carlos
  surname: Ferrando
  fullname: Ferrando, Carlos
– sequence: 29
  givenname: Belén
  surname: Civantos
  fullname: Civantos, Belén
– sequence: 30
  givenname: Mónica
  surname: Hernández
  fullname: Hernández, Mónica
– sequence: 31
  givenname: David
  surname: Andaluz
  fullname: Andaluz, David
– sequence: 32
  givenname: Leonor
  surname: Nogales
  fullname: Nogales, Leonor
– sequence: 33
  givenname: Dácil
  surname: Parrilla
  fullname: Parrilla, Dácil
– sequence: 34
  givenname: Eduardo
  surname: Peinado
  fullname: Peinado, Eduardo
– sequence: 35
  givenname: Lina
  surname: Pérez-Méndez
  fullname: Pérez-Méndez, Lina
– sequence: 36
  givenname: Elena
  surname: González-Higueras
  fullname: González-Higueras, Elena
– sequence: 37
  givenname: Anxela
  surname: Vidal
  fullname: Vidal, Anxela
– sequence: 38
  givenname: César
  surname: Pérez
  fullname: Pérez, César
– sequence: 39
  givenname: Robert M
  surname: Kacmarek
  fullname: Kacmarek, Robert M
Copyright Copyright © 2023 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.
Copyright_xml – notice: Copyright © 2023 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.
CorporateAuthor Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Network
for the Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Network
CorporateAuthor_xml – name: Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Network
– name: for the Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Network
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1097/CCM.0000000000006030
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1530-0293
EndPage 1649
ExternalDocumentID 10_1097_CCM_0000000000006030
37651262
Genre Multicenter Study
Research Support, Non-U.S. Gov't
Journal Article
Observational Study
GrantInformation_xml – fundername: Canadian Institutes for Health Research
  grantid: 137772
– fundername: Canadian Institutes for Health Research
  grantid: FDN 143285
GroupedDBID ---
.-D
.XZ
.Z2
01R
0R~
1J1
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6J9
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AASXQ
AAUEB
AAWTL
AAXQO
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPPZ
ABVCZ
ABXVJ
ABZAD
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACOAL
ACWDW
ACWRI
ACXJB
ACXNZ
ADGGA
ADHPY
AE6
AEBDS
AENEX
AFDTB
AFEXH
AFSOK
AFUWQ
AGINI
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJIOK
AJNWD
AJZMW
AKULP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AWKKM
BOYCO
BQLVK
BYPQX
C45
CGR
CS3
CUY
CVF
DIWNM
DU5
E.X
EBS
ECM
EEVPB
EIF
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
GNXGY
GQDEL
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
L-C
L7B
N9A
NPM
N~7
N~B
O9-
OAG
OAH
OB4
OBH
ODA
ODMTH
ODZKP
OHH
OHYEH
OJAPA
OL1
OLB
OLG
OLH
OLU
OLV
OLW
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PONUX
RIG
RLZ
S4R
S4S
TEORI
TSPGW
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
XXN
XYM
YCJ
YFH
YOC
YOJ
ZFV
ZY1
~9M
.3C
.55
.GJ
3O-
AAQQT
AAYOK
AAYXX
ACCJW
ADFPA
ADNKB
AE3
AEETU
AFFNX
AHRYX
AI.
AJNYG
BS7
CITATION
DUNZO
EJD
FW0
J5H
M18
N4W
NEJ
N~M
OCUKA
OHT
ONV
ORVUJ
OUVQU
P-K
R58
T8P
VH1
X7M
ZCG
ZGI
ZXP
ZZMQN
7X8
ID FETCH-LOGICAL-c353t-df15101f70a65321ce1846406ee707e4cbd84b59116d841f1dca0559086578203
ISSN 0090-3493
IngestDate Sat Oct 26 05:53:33 EDT 2024
Fri Nov 22 02:34:29 EST 2024
Sat Nov 02 12:17:32 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Copyright © 2023 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-df15101f70a65321ce1846406ee707e4cbd84b59116d841f1dca0559086578203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://orca.cardiff.ac.uk/id/eprint/162897/1/POSTCARDS%20paper%20for%20ORCA.pdf
PMID 37651262
PQID 2860405599
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2860405599
crossref_primary_10_1097_CCM_0000000000006030
pubmed_primary_37651262
PublicationCentury 2000
PublicationDate 2023-12-01
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Critical care medicine
PublicationTitleAlternate Crit Care Med
PublicationYear 2023
References 38240521 - Crit Care Med. 2024 Feb 1;52(2):e105-e106
37971334 - Crit Care Med. 2023 Dec 1;51(12):1814-1816
Villar (R1-20240805) 2017; 23
González-Martin (R29-20240805) 2019; 33
Villar (R3-20240805) 2015; 5
Leisman (R22-20240805) 2020; 48
Gee (R38-20240805) 1990; 69
Huang (R15-20240805) 2021; 9
Moss (R7-20240805) 2019; 380
Villar (R18-20240805) 2011; 37
Villar (R9-20240805) 2020; 8
Guerin (R6-20240805) 2013; 368
Pirrachio (R12-20240805) 2015; 3
Rashid (R33-20240805) 2022; 131
Guerin (R50-20240805) 2020; 46
Morris (R48-20240805) 2018; 15
Cowan (R49-20240805) 2001; 24
Kallet (R51-20240805) 2019; 64
Villar (R4-20240805) 2021; 49
Vergouwe (R21-20240805) 2005; 58
Vincent (R25-20240805) 1998; 26
Møller (R42-20240805) 2020; 46
Villar (R19-20240805) 2013; 39
Liaw (R35-20240805) 2002; 2
Villar (R27-20240805) 2017; 45
Shiu (R40-20240805) 2006; 173
Ioannidis (R31-20240805) 2018; 319
Vrieze (R30-20240805) 2012; 17
Villar (R24-20240805) 2007; 176
Nemati (R13-20240805) 2018; 46
Villar (R41-20240805) 2018; 46
Brower (R5-20240805) 2000; 342
Gutierrez (R32-20240805) 2020; 24
Knaus (R23-20240805) 1985; 13
Morris (R47-20240805) 2021; 28
Villar (R26-20240805) 2016; 44
Collins (R17-20240805) 2015; 68
Steyerberg (R36-20240805) 2014; 35
Soubani (R39-20240805) 2014; 29
Sayed (R16-20240805) 2021; 25
Ranieri (R11-20240805) 2012; 307
Ferring (R2-20240805) 1997; 10
Villar (R20-20240805) 2022; 4
Scrucca (R28-20240805) 2013; 53
Ding (R14-20240805) 2019; 17
Kacmarek (R46-20240805) 2018; 6
Steyerberg (R52-20240805) 2010; 21
Maslove (R10-20240805) 2022; 28
Combes (R8-20240805) 2018; 378
Van Calster (R37-20240805) 2016; 74
Villar (R43-20240805) 2021; 12
Juschten (R44-20240805) 2021; 47
References_xml – volume: 53
  start-page: 1
  year: 2013
  ident: R28-20240805
  article-title: GA: A package for genetic algorithms in R.
  publication-title: J Stat Softw
  doi: 10.18637/jss.v053.i04
  contributor:
    fullname: Scrucca
– volume: 46
  start-page: 892
  year: 2018
  ident: R41-20240805
  article-title: Is overall mortality the right composite endpoint in clinical trials of acute respiratory distress syndrome?
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000003022
  contributor:
    fullname: Villar
– volume: 15
  start-page: S53
  year: 2018
  ident: R48-20240805
  article-title: Human cognitive limitations. Broad, consistent, clinical application of physiological principles will require decision support.
  publication-title: An Am Thorac Soc
  doi: 10.1513/AnnalsATS.201706-449KV
  contributor:
    fullname: Morris
– volume: 69
  start-page: 822
  year: 1990
  ident: R38-20240805
  article-title: Physiology of aging related to outcome in the adult respiratory distress syndrome.
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/jappl.1990.69.3.822
  contributor:
    fullname: Gee
– volume: 64
  start-page: 493
  year: 2019
  ident: R51-20240805
  article-title: Characteristics of nonpulmonary organ dysfunction at onset of ARDS based on the Berlin definition.
  publication-title: Respir Care
  doi: 10.4187/respcare.06165
  contributor:
    fullname: Kallet
– volume: 378
  start-page: 1965
  year: 2018
  ident: R8-20240805
  article-title: Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome.
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1800385
  contributor:
    fullname: Combes
– volume: 49
  start-page: e920
  year: 2021
  ident: R4-20240805
  article-title: Stratification for identification of prognostic categories in the acute respiratory distress syndrome (SPIRES) score.
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000005142
  contributor:
    fullname: Villar
– volume: 23
  start-page: 4
  year: 2017
  ident: R1-20240805
  article-title: Golden anniversary of the acute respiratory distress syndrome: Still much work to do!.
  publication-title: Curr Opin Crit Care
  doi: 10.1097/MCC.0000000000000378
  contributor:
    fullname: Villar
– volume: 342
  start-page: 1301
  year: 2000
  ident: R5-20240805
  article-title: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.
  publication-title: N Engl J Med
  doi: 10.1056/NEJM200005043421801
  contributor:
    fullname: Brower
– volume: 176
  start-page: 795
  year: 2007
  ident: R24-20240805
  article-title: An early PEEP/FiO2 trial identifies different degrees of lung injury in patients with acute respiratory distress syndrome.
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200610-1534OC
  contributor:
    fullname: Villar
– volume: 368
  start-page: 2159
  year: 2013
  ident: R6-20240805
  article-title: The PROSEVA Study Group: Prone positioning in severe acute respiratory distress syndrome.
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1214103
  contributor:
    fullname: Guerin
– volume: 47
  start-page: 422
  year: 2021
  ident: R44-20240805
  article-title: Between-trial heterogeneity in ARDS research.
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-021-06370-w
  contributor:
    fullname: Juschten
– volume: 68
  start-page: 112
  year: 2015
  ident: R17-20240805
  article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement.
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2014.11.010
  contributor:
    fullname: Collins
– volume: 173
  start-page: 686
  year: 2006
  ident: R40-20240805
  article-title: Is there a safe plateau pressure threshold for patients with acute lung injury and acute respiratory distress syndrome?
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/ajrccm.173.6.686
  contributor:
    fullname: Shiu
– volume: 24
  start-page: 101
  year: 2020
  ident: R32-20240805
  article-title: Artificial intelligence in the intensive care unit.
  publication-title: Crit Care
  doi: 10.1186/s13054-020-2785-y
  contributor:
    fullname: Gutierrez
– volume: 74
  start-page: 167
  year: 2016
  ident: R37-20240805
  article-title: A calibration hierarchy for risk models was defined: From utopia to empirical data.
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2015.12.005
  contributor:
    fullname: Van Calster
– volume: 2
  start-page: 18
  year: 2002
  ident: R35-20240805
  article-title: Classification and regression by randomForest.
  publication-title: R News
  contributor:
    fullname: Liaw
– volume: 21
  start-page: 128
  year: 2010
  ident: R52-20240805
  article-title: Assessing the performance of prediction models: A framework for some traditional and novel measures.
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181c30fb2
  contributor:
    fullname: Steyerberg
– volume: 12
  start-page: 774025
  year: 2021
  ident: R43-20240805
  article-title: Unsuccessful and successful clinical trials in acute respiratory distress syndrome: Addressing physiology-based gaps.
  publication-title: Front Physiol
  doi: 10.3389/fphys.2021.774025
  contributor:
    fullname: Villar
– volume: 3
  start-page: 42
  year: 2015
  ident: R12-20240805
  article-title: Mortality prediction in intensive care units with the Super ICU Learner Algorith (SICULA): A population-based study.
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(14)70239-5
  contributor:
    fullname: Pirrachio
– volume: 13
  start-page: 818
  year: 1985
  ident: R23-20240805
  article-title: APACHE II: A severity of disease classification system.
  publication-title: Crit Care Med
  doi: 10.1097/00003246-198510000-00009
  contributor:
    fullname: Knaus
– volume: 29
  start-page: 183.e7
  year: 2014
  ident: R39-20240805
  article-title: The outcome of cancer patients with acute respiratory distress syndrome.
  publication-title: J Crit Care
  doi: 10.1016/j.jcrc.2013.10.011
  contributor:
    fullname: Soubani
– volume: 28
  start-page: 1330
  year: 2021
  ident: R47-20240805
  article-title: Enabling a learning healthcare system with automated computer protocols that produce replicable and personalized clinical actions.
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocaa294
  contributor:
    fullname: Morris
– volume: 10
  start-page: 1297
  year: 1997
  ident: R2-20240805
  article-title: Is outcome from ARDS related to the severity of respiratory failure?
  publication-title: Eur Respir J
  doi: 10.1183/09031936.97.10061297
  contributor:
    fullname: Ferring
– volume: 28
  start-page: 1141
  year: 2022
  ident: R10-20240805
  article-title: Redefining critical illness.
  publication-title: Nature Med
  doi: 10.1038/s41591-022-01843-x
  contributor:
    fullname: Maslove
– volume: 58
  start-page: 475
  year: 2005
  ident: R21-20240805
  article-title: Substantial effective sample sizes were required for external validation studies of predictive logistic regression models.
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2004.06.017
  contributor:
    fullname: Vergouwe
– volume: 17
  start-page: 228
  year: 2012
  ident: R30-20240805
  article-title: Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC).
  publication-title: Psychol Methods
  doi: 10.1037/a0027127
  contributor:
    fullname: Vrieze
– volume: 46
  start-page: 2385
  year: 2020
  ident: R50-20240805
  article-title: Prone position in ARDS patients: Why, when, how and for whom.
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-020-06306-w
  contributor:
    fullname: Guerin
– volume: 9
  start-page: 794
  year: 2021
  ident: R15-20240805
  article-title: Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: A population-based study.
  publication-title: Ann Transl Med
  doi: 10.21037/atm-20-6624
  contributor:
    fullname: Huang
– volume: 380
  start-page: 1997
  year: 2019
  ident: R7-20240805
  article-title: Early neuromuscular blockade in the acute respiratory distress syndrome.
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1901686
  contributor:
    fullname: Moss
– volume: 131
  start-page: 102361
  year: 2022
  ident: R33-20240805
  article-title: Artificial intelligence in acute respiratory distress syndrome: A systematic review.
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2022.102361
  contributor:
    fullname: Rashid
– volume: 25
  start-page: 150
  year: 2021
  ident: R16-20240805
  article-title: Novel criteria to classify ARDS severity using machine learning approach.
  publication-title: Crit Care
  doi: 10.1186/s13054-021-03566-w
  contributor:
    fullname: Sayed
– volume: 45
  start-page: 843
  year: 2017
  ident: R27-20240805
  article-title: A quantile analysis of plateau and driving pressure: Effects on mortality in patients with acute respiratory distress syndrome receiving lung-protective ventilation.
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000002330
  contributor:
    fullname: Villar
– volume: 33
  start-page: 462
  year: 2019
  ident: R29-20240805
  article-title: Optimization of the prediction of financial problems in Spanish private health companies using genetic algorithm.
  publication-title: Gac Sanit
  contributor:
    fullname: González-Martin
– volume: 37
  start-page: 1932
  year: 2011
  ident: R18-20240805
  article-title: The ALIEN study: Incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation.
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-011-2380-4
  contributor:
    fullname: Villar
– volume: 48
  start-page: 623
  year: 2020
  ident: R22-20240805
  article-title: Development and reporting of prediction models: Guidance for authors from editors of respiratory, sleep, and critical care journals.
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000004246
  contributor:
    fullname: Leisman
– volume: 319
  start-page: 1429
  year: 2018
  ident: R31-20240805
  article-title: The proposal to lower P value thresholds to 0.005.
  publication-title: JAMA
  doi: 10.1001/jama.2018.1536
  contributor:
    fullname: Ioannidis
– volume: 4
  start-page: e0684
  year: 2022
  ident: R20-20240805
  article-title: The PANDORA study: Prevalence and outcome of acute hypoxemic respiratory failure in the pre-COVID era.
  publication-title: Crit Care Explor
  doi: 10.1097/CCE.0000000000000684
  contributor:
    fullname: Villar
– volume: 24
  start-page: 87
  year: 2001
  ident: R49-20240805
  article-title: The magical number 4 in short-term memory: A reconsideration of mental storage capacity.
  publication-title: Behav Brain Sci
  doi: 10.1017/S0140525X01003922
  contributor:
    fullname: Cowan
– volume: 17
  start-page: 326
  year: 2019
  ident: R14-20240805
  article-title: Predictive model for acute respiratory distress syndrome events: A secondary analysis of a cohort study.
  publication-title: J Transl Med
  doi: 10.1186/s12967-019-2075-0
  contributor:
    fullname: Ding
– volume: 26
  start-page: 1793
  year: 1998
  ident: R25-20240805
  article-title: Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: Results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine.
  publication-title: Crit Care Med
  doi: 10.1097/00003246-199811000-00016
  contributor:
    fullname: Vincent
– volume: 39
  start-page: 583
  year: 2013
  ident: R19-20240805
  article-title: A universal definition of ARDS: The PaO2/FiO2 ratio under s standard ventilatory setting – a prospective, multicenter validation study.
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-012-2803-x
  contributor:
    fullname: Villar
– volume: 5
  start-page: e006812
  year: 2015
  ident: R3-20240805
  article-title: Assessment of PaO2/FiO2 for stratification of patients with moderate and severe acute respiratory distress syndrome.
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2014-006812
  contributor:
    fullname: Villar
– volume: 6
  start-page: 253
  year: 2018
  ident: R46-20240805
  article-title: Prediction of ARDS outcome: What tool should I use?
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(18)30098-5
  contributor:
    fullname: Kacmarek
– volume: 8
  start-page: 267
  year: 2020
  ident: R9-20240805
  article-title: Dexamethasone treatment for the acute respiratory distress syndrome: A multicentre, randomised controlled trial.
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(19)30417-5
  contributor:
    fullname: Villar
– volume: 44
  start-page: 1361
  year: 2016
  ident: R26-20240805
  article-title: Age, PaO2/FiO2 and plateau pressure score: A proposal for a simple outcome score in patients with acute respiratory distress syndrome.
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000001653
  contributor:
    fullname: Villar
– volume: 46
  start-page: 790
  year: 2020
  ident: R42-20240805
  article-title: Focus on clinical trial interpretation.
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-020-06000-x
  contributor:
    fullname: Møller
– volume: 307
  start-page: 2526
  year: 2012
  ident: R11-20240805
  article-title: Acute respiratory distress syndrome: The Berlin definition.
  publication-title: JAMA
  contributor:
    fullname: Ranieri
– volume: 46
  start-page: 547
  year: 2018
  ident: R13-20240805
  article-title: An interpretable machine learning model for accurate prediction of sepsis in the ICU.
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000002936
  contributor:
    fullname: Nemati
– volume: 35
  start-page: 1925
  year: 2014
  ident: R36-20240805
  article-title: Towards better clinical prediction models: Seven steps for development and an ABCD for validation.
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehu207
  contributor:
    fullname: Steyerberg
SSID ssj0014573
Score 2.5286405
Snippet To assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with acute...
OBJECTIVESTo assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 1638
SubjectTerms Humans
Intensive Care Units
Lung
Prospective Studies
Respiration, Artificial - methods
Respiratory Distress Syndrome - therapy
Title Predicting ICU Mortality in Acute Respiratory Distress Syndrome Patients Using Machine Learning: The Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Study
URI https://www.ncbi.nlm.nih.gov/pubmed/37651262
https://search.proquest.com/docview/2860405599
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBabXSi9lL6bvphCDy1F1PLbvSVx0i1sNsvGKXsztiyHwOKUJL7sr-pP7EiWHGfZwvbQHIxtIukwn0fz0jeEfPSEJbLcZ9TnYURdm2c09yJO0WV288K1OC9lRvd0HpxfhfHYHR_1TM_M_bv_Kml8h7KWJ2f_QdrtpPgC71HmeEWp4_Vecr_YyNSLKmb-MVp8mSrzWpraqjWErAq47GTX45U-LDLXzAWSs3-lTr01xQRTVWwpDA_r0lRpdJaZ1TsuR6oi0EQiqlyNWksUd16xMetfxjJsEF7M5slIPsiYxLwluDWECab7gqpKu538_ynbJG2awpytTPMPB61b8H1d3ajMP7sWN1QyJKinuDr8ezcCvKmaATKUTg_GN2NUJcHQqRDSnW9DVMumM9l0tazFtQ4I6-CJ7XQKUYRR-Ba17KZLo9kRNAWuRr7d0e_Seu3YCuhrRnfuQ5rfeDRt-DH1z7d0DuqA9vt8lk4WZ2dpMr5KeuTERo2JCvtkMImTYZsQc73AMSc_o-DrXTMfWlZ_cZeU2ZQ8Jo-0vwODBqhPyJGonpIHUy3UZ-T3HkiAeIUWr7CqQOEVOngFg1cweAWDV1B4BY1XMHj9BohW6Cyi0QqIVjhEK6xLMGhVqyNA4VOL1c-gkPqcLCbjZHRKdRcRyh3P2dGiZHLfKQMr8z3HZlwwtLnRjhUisALh8rwIXdRPjPl4w0pW8MxCPxt9fdnqwXJekONqXYlXBBxRsDDyw6gIMzfLhaRuKz3HZ1HuuZHgfUKNBNJfDVlMaoo8UGLpbYn1yQcjphS1ukzVZZVY19vUDn3cXSUbYJ-8bOTXzogmAVrpvv36HqPfkId72L8lx7tNLd6R3rao32uE_QGvZ8RW
link.rule.ids 315,782,786,27933,27934
linkProvider Ovid
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+ICU+Mortality+in+Acute+Respiratory+Distress+Syndrome+Patients+Using+Machine+Learning%3A+The+Predicting+Outcome+and+STratifiCation+of+severity+in+ARDS+%28POSTCARDS%29+Study&rft.jtitle=Critical+care+medicine&rft.au=Villar%2C+Jes%C3%BAs&rft.au=Gonz%C3%A1lez-Mart%C3%ADn%2C+Jes%C3%BAs+M&rft.au=Hern%C3%A1ndez-Gonz%C3%A1lez%2C+Jer%C3%B3nimo&rft.au=Armengol%2C+Miguel+A&rft.date=2023-12-01&rft.eissn=1530-0293&rft.volume=51&rft.issue=12&rft.spage=1638&rft.epage=1649&rft_id=info:doi/10.1097%2FCCM.0000000000006030&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-3493&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-3493&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-3493&client=summon