Predicting ICU Mortality in Acute Respiratory Distress Syndrome Patients Using Machine Learning: The Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Study
To assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with acute respiratory distress syndrome (ARDS). A development, testing, and external validation study using clinical data from four prospective, multicenter,...
Saved in:
Published in: | Critical care medicine Vol. 51; no. 12; pp. 1638 - 1649 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-12-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | To assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with acute respiratory distress syndrome (ARDS).
A development, testing, and external validation study using clinical data from four prospective, multicenter, observational cohorts.
A network of multidisciplinary ICUs.
A total of 1,303 patients with moderate-to-severe ARDS managed with lung-protective ventilation.
None.
We developed and tested prediction models in 1,000 ARDS patients. We performed logistic regression analysis following variable selection by a genetic algorithm, random forest and extreme gradient boosting machine learning techniques. Potential predictors included demographics, comorbidities, ventilatory and oxygenation descriptors, and extrapulmonary organ failures. Risk modeling identified some major prognostic factors for ICU mortality, including age, cancer, immunosuppression, Pa o2 /F io2 , inspiratory plateau pressure, and number of extrapulmonary organ failures. Together, these characteristics contained most of the prognostic information in the first 24 hours to predict ICU mortality. Performance with machine learning methods was similar to logistic regression (area under the receiver operating characteristic curve [AUC], 0.87; 95% CI, 0.82-0.91). External validation in an independent cohort of 303 ARDS patients confirmed that the performance of the model was similar to a logistic regression model (AUC, 0.91; 95% CI, 0.87-0.94).
Both machine learning and traditional methods lead to promising models to predict ICU death in moderate/severe ARDS patients. More research is needed to identify markers for severity beyond clinical determinants, such as demographics, comorbidities, lung mechanics, oxygenation, and extrapulmonary organ failure to guide patient management. |
---|---|
AbstractList | OBJECTIVESTo assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with acute respiratory distress syndrome (ARDS).DESIGNA development, testing, and external validation study using clinical data from four prospective, multicenter, observational cohorts.SETTINGA network of multidisciplinary ICUs.PATIENTSA total of 1,303 patients with moderate-to-severe ARDS managed with lung-protective ventilation.INTERVENTIONSNone.MEASUREMENTS AND MAIN RESULTSWe developed and tested prediction models in 1,000 ARDS patients. We performed logistic regression analysis following variable selection by a genetic algorithm, random forest and extreme gradient boosting machine learning techniques. Potential predictors included demographics, comorbidities, ventilatory and oxygenation descriptors, and extrapulmonary organ failures. Risk modeling identified some major prognostic factors for ICU mortality, including age, cancer, immunosuppression, Pa o2 /F io2 , inspiratory plateau pressure, and number of extrapulmonary organ failures. Together, these characteristics contained most of the prognostic information in the first 24 hours to predict ICU mortality. Performance with machine learning methods was similar to logistic regression (area under the receiver operating characteristic curve [AUC], 0.87; 95% CI, 0.82-0.91). External validation in an independent cohort of 303 ARDS patients confirmed that the performance of the model was similar to a logistic regression model (AUC, 0.91; 95% CI, 0.87-0.94).CONCLUSIONSBoth machine learning and traditional methods lead to promising models to predict ICU death in moderate/severe ARDS patients. More research is needed to identify markers for severity beyond clinical determinants, such as demographics, comorbidities, lung mechanics, oxygenation, and extrapulmonary organ failure to guide patient management. To assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with acute respiratory distress syndrome (ARDS). A development, testing, and external validation study using clinical data from four prospective, multicenter, observational cohorts. A network of multidisciplinary ICUs. A total of 1,303 patients with moderate-to-severe ARDS managed with lung-protective ventilation. None. We developed and tested prediction models in 1,000 ARDS patients. We performed logistic regression analysis following variable selection by a genetic algorithm, random forest and extreme gradient boosting machine learning techniques. Potential predictors included demographics, comorbidities, ventilatory and oxygenation descriptors, and extrapulmonary organ failures. Risk modeling identified some major prognostic factors for ICU mortality, including age, cancer, immunosuppression, Pa o2 /F io2 , inspiratory plateau pressure, and number of extrapulmonary organ failures. Together, these characteristics contained most of the prognostic information in the first 24 hours to predict ICU mortality. Performance with machine learning methods was similar to logistic regression (area under the receiver operating characteristic curve [AUC], 0.87; 95% CI, 0.82-0.91). External validation in an independent cohort of 303 ARDS patients confirmed that the performance of the model was similar to a logistic regression model (AUC, 0.91; 95% CI, 0.87-0.94). Both machine learning and traditional methods lead to promising models to predict ICU death in moderate/severe ARDS patients. More research is needed to identify markers for severity beyond clinical determinants, such as demographics, comorbidities, lung mechanics, oxygenation, and extrapulmonary organ failure to guide patient management. |
Author | Villar, Jesús Robaglia, Denis Hernández-González, Jerónimo Steyerberg, Ewout W Rodríguez-Suárez, Pedro Slutsky, Arthur S Martín-Rodríguez, Carmen Domínguez-Berrot, Ana M Szakmany, Tamas Solano, Rosario González-Martín, Jesús M Gómez-Bentolila, Estrella Martínez, Domingo Montiel, Raquel Fernández, Rosa L Ferrando, Carlos Mosteiro, Fernando Sánchez-Ballesteros, Jesús Añón, José M Armengol, Miguel A Fernández, Cristina Parra, Laura |
Author_xml | – sequence: 1 givenname: Jesús surname: Villar fullname: Villar, Jesús organization: Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, ON, Canada – sequence: 2 givenname: Jesús M surname: González-Martín fullname: González-Martín, Jesús M organization: Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain – sequence: 3 givenname: Jerónimo surname: Hernández-González fullname: Hernández-González, Jerónimo organization: Departament de Matemàtiques i Informàtica, Universitat de Barcelona (UB), Barcelona, Spain – sequence: 4 givenname: Miguel A surname: Armengol fullname: Armengol, Miguel A organization: Big Data Department, PMC-FPS, Regional Ministry of Health and Consumer Affairs, Sevilla, Spain – sequence: 5 givenname: Cristina surname: Fernández fullname: Fernández, Cristina organization: Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain – sequence: 6 givenname: Carmen surname: Martín-Rodríguez fullname: Martín-Rodríguez, Carmen organization: Intensive Care Unit, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain – sequence: 7 givenname: Fernando surname: Mosteiro fullname: Mosteiro, Fernando organization: Intensive Care Unit, Hospital Universitario de A Coruña, La Coruña, Spain – sequence: 8 givenname: Domingo surname: Martínez fullname: Martínez, Domingo organization: Intensive Care Unit, Hospital Universitario Virgen de Arrixaca, Murcia, Spain – sequence: 9 givenname: Jesús surname: Sánchez-Ballesteros fullname: Sánchez-Ballesteros, Jesús organization: Intensive Care Unit, Hospital Universitario Río Hortega, Valladolid, Spain – sequence: 10 givenname: Carlos surname: Ferrando fullname: Ferrando, Carlos organization: Surgical Intensive Care Unit, Department of Anesthesia, Hospital Clinic, IDIBAPS, Barcelona, Spain – sequence: 11 givenname: Ana M surname: Domínguez-Berrot fullname: Domínguez-Berrot, Ana M organization: Intensive Care Unit, Complejo Asistencial Universitario de León, León, Spain – sequence: 12 givenname: José M surname: Añón fullname: Añón, José M organization: Intensive Care Unit, Hospital Universitario La Paz, IdiPaz, Madrid, Spain – sequence: 13 givenname: Laura surname: Parra fullname: Parra, Laura organization: Intensive Care Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain – sequence: 14 givenname: Raquel surname: Montiel fullname: Montiel, Raquel organization: Intensive Care Unit, Hospital Universitario NS de Candelaria, Santa Cruz de Tenerife, Spain – sequence: 15 givenname: Rosario surname: Solano fullname: Solano, Rosario organization: Intensive Care Unit, Hospital Virgen de La Luz, Cuenca, Spain – sequence: 16 givenname: Denis surname: Robaglia fullname: Robaglia, Denis organization: Intensive Care Unit, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain – sequence: 17 givenname: Pedro surname: Rodríguez-Suárez fullname: Rodríguez-Suárez, Pedro organization: Thoracic Surgery, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain – sequence: 18 givenname: Estrella surname: Gómez-Bentolila fullname: Gómez-Bentolila, Estrella organization: Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain – sequence: 19 givenname: Rosa L surname: Fernández fullname: Fernández, Rosa L organization: Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain – sequence: 20 givenname: Tamas surname: Szakmany fullname: Szakmany, Tamas organization: Cardiff University, Cardiff, United Kingdom – sequence: 21 givenname: Ewout W surname: Steyerberg fullname: Steyerberg, Ewout W organization: Department Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands – sequence: 22 givenname: Arthur S surname: Slutsky fullname: Slutsky, Arthur S organization: Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37651262$$D View this record in MEDLINE/PubMed |
BookMark | eNpdUctu2zAQJIoUjZP2D4qAx-SgdCmKlNRboDQPwIaNyD4LNLVqGNikS1IB9Ff9xEhI0hbdw-5gMY_DnJAj6ywS8pXBJYMy_1ZVi0v4ZyRw-EBmTHBIIC35EZkBlJDwrOTH5CSEJwCWiZx_Isc8l4KlMp2R3yuPrdHR2J_0vtrQhfNR7UwcqLH0SvcR6QOGg_EqOj_QaxOixxBoPdjWuz3SlYoGbQx0EyaPhdKPxiKdo_J2fHyn68eR9Ddk2Uc96ZRtab0ebU1nqnE7S11HAz6jf09_uK7p-WpZr6sJXtA69u3wmXzs1C7gl7d7SjY3P9bVXTJf3t5XV_NEc8Fj0nZMMGBdDkoKnjKNrMhkBhIxhxwzvW2LbCtKxuQIWMdarUCIEgop8iIFfkrOX30P3v3qMcRmb4LG3U5ZdH1o0kJCNinKkZq9UrV3IXjsmoM3e-WHhkEzddWMXTX_dzXKzt4S-u0e2z-i93L4C6H4kNM |
CitedBy_id | crossref_primary_10_1097_CCM_0000000000006115 crossref_primary_10_3390_jcm13061811 crossref_primary_10_1186_s13054_023_04699_w crossref_primary_10_1186_s40560_023_00707_x crossref_primary_10_1186_s12890_023_02736_6 crossref_primary_10_1097_CCM_0000000000006084 crossref_primary_10_1097_CCM_0000000000006061 |
Cites_doi | 10.18637/jss.v053.i04 10.1097/CCM.0000000000003022 10.1513/AnnalsATS.201706-449KV 10.1152/jappl.1990.69.3.822 10.4187/respcare.06165 10.1056/NEJMoa1800385 10.1097/CCM.0000000000005142 10.1097/MCC.0000000000000378 10.1056/NEJM200005043421801 10.1164/rccm.200610-1534OC 10.1056/NEJMoa1214103 10.1007/s00134-021-06370-w 10.1016/j.jclinepi.2014.11.010 10.1164/ajrccm.173.6.686 10.1186/s13054-020-2785-y 10.1016/j.jclinepi.2015.12.005 10.1097/EDE.0b013e3181c30fb2 10.3389/fphys.2021.774025 10.1016/S2213-2600(14)70239-5 10.1097/00003246-198510000-00009 10.1016/j.jcrc.2013.10.011 10.1093/jamia/ocaa294 10.1183/09031936.97.10061297 10.1038/s41591-022-01843-x 10.1016/j.jclinepi.2004.06.017 10.1037/a0027127 10.1007/s00134-020-06306-w 10.21037/atm-20-6624 10.1056/NEJMoa1901686 10.1016/j.artmed.2022.102361 10.1186/s13054-021-03566-w 10.1097/CCM.0000000000002330 10.1007/s00134-011-2380-4 10.1097/CCM.0000000000004246 10.1001/jama.2018.1536 10.1097/CCE.0000000000000684 10.1017/S0140525X01003922 10.1186/s12967-019-2075-0 10.1097/00003246-199811000-00016 10.1007/s00134-012-2803-x 10.1136/bmjopen-2014-006812 10.1016/S2213-2600(18)30098-5 10.1016/S2213-2600(19)30417-5 10.1097/CCM.0000000000001653 10.1007/s00134-020-06000-x 10.1097/CCM.0000000000002936 10.1093/eurheartj/ehu207 |
ContentType | Journal Article |
Contributor | Capilla, Lucia Arrojo, Regina Soro, Marina Hornos-López, Carmen Aldecoa, César Conesa-Cayuela, Luís A Del Saz-Ortiz, Ana M Pérez, César Domínguez, Ana M Peinado, Eduardo Parrilla, Dácil Aguilar, Gerardo Muriel, Arturo Díaz-Domínguez, Francisco J Hernández, Mónica Belda, Javier Soler, Juan A Rico-Feijoo, Jesús Blanco-Schweizer, Pablo Martín-Alfonso, Silvia González-Higueras, Elena Blanco, Jesús Bueno-González, Ana Pérez, Alba Nogales, Leonor Kacmarek, Robert M Fernández, Lorena Civantos, Belén Vidal, Anxela González-Luengo, Raúl I Andaluz, David Ambrós, Alfonso Del Campo, Rafael Carriedo, Demetrio Díaz-Lamas, Ana M Pérez-Méndez, Lina Ferrando, Carlos Gutiérrez, Andrea Pita-García, Lidia |
Contributor_xml | – sequence: 1 givenname: Alfonso surname: Ambrós fullname: Ambrós, Alfonso – sequence: 2 givenname: Rafael surname: Del Campo fullname: Del Campo, Rafael – sequence: 3 givenname: Ana surname: Bueno-González fullname: Bueno-González, Ana – sequence: 4 givenname: Carmen surname: Hornos-López fullname: Hornos-López, Carmen – sequence: 5 givenname: Lidia surname: Pita-García fullname: Pita-García, Lidia – sequence: 6 givenname: Ana M surname: Díaz-Lamas fullname: Díaz-Lamas, Ana M – sequence: 7 givenname: Regina surname: Arrojo fullname: Arrojo, Regina – sequence: 8 givenname: Juan A surname: Soler fullname: Soler, Juan A – sequence: 9 givenname: Luís A surname: Conesa-Cayuela fullname: Conesa-Cayuela, Luís A – sequence: 10 givenname: Ana M surname: Del Saz-Ortiz fullname: Del Saz-Ortiz, Ana M – sequence: 11 givenname: Lucia surname: Capilla fullname: Capilla, Lucia – sequence: 12 givenname: Lorena surname: Fernández fullname: Fernández, Lorena – sequence: 13 givenname: Jesús surname: Blanco fullname: Blanco, Jesús – sequence: 14 givenname: Arturo surname: Muriel fullname: Muriel, Arturo – sequence: 15 givenname: Pablo surname: Blanco-Schweizer fullname: Blanco-Schweizer, Pablo – sequence: 16 givenname: César surname: Aldecoa fullname: Aldecoa, César – sequence: 17 givenname: Jesús surname: Rico-Feijoo fullname: Rico-Feijoo, Jesús – sequence: 18 givenname: Alba surname: Pérez fullname: Pérez, Alba – sequence: 19 givenname: Silvia surname: Martín-Alfonso fullname: Martín-Alfonso, Silvia – sequence: 20 givenname: Ana M surname: Domínguez fullname: Domínguez, Ana M – sequence: 21 givenname: Francisco J surname: Díaz-Domínguez fullname: Díaz-Domínguez, Francisco J – sequence: 22 givenname: Raúl I surname: González-Luengo fullname: González-Luengo, Raúl I – sequence: 23 givenname: Demetrio surname: Carriedo fullname: Carriedo, Demetrio – sequence: 24 givenname: Marina surname: Soro fullname: Soro, Marina – sequence: 25 givenname: Javier surname: Belda fullname: Belda, Javier – sequence: 26 givenname: Andrea surname: Gutiérrez fullname: Gutiérrez, Andrea – sequence: 27 givenname: Gerardo surname: Aguilar fullname: Aguilar, Gerardo – sequence: 28 givenname: Carlos surname: Ferrando fullname: Ferrando, Carlos – sequence: 29 givenname: Belén surname: Civantos fullname: Civantos, Belén – sequence: 30 givenname: Mónica surname: Hernández fullname: Hernández, Mónica – sequence: 31 givenname: David surname: Andaluz fullname: Andaluz, David – sequence: 32 givenname: Leonor surname: Nogales fullname: Nogales, Leonor – sequence: 33 givenname: Dácil surname: Parrilla fullname: Parrilla, Dácil – sequence: 34 givenname: Eduardo surname: Peinado fullname: Peinado, Eduardo – sequence: 35 givenname: Lina surname: Pérez-Méndez fullname: Pérez-Méndez, Lina – sequence: 36 givenname: Elena surname: González-Higueras fullname: González-Higueras, Elena – sequence: 37 givenname: Anxela surname: Vidal fullname: Vidal, Anxela – sequence: 38 givenname: César surname: Pérez fullname: Pérez, César – sequence: 39 givenname: Robert M surname: Kacmarek fullname: Kacmarek, Robert M |
Copyright | Copyright © 2023 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved. |
Copyright_xml | – notice: Copyright © 2023 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved. |
CorporateAuthor | Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Network for the Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Network |
CorporateAuthor_xml | – name: Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Network – name: for the Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Network |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1097/CCM.0000000000006030 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1530-0293 |
EndPage | 1649 |
ExternalDocumentID | 10_1097_CCM_0000000000006030 37651262 |
Genre | Multicenter Study Research Support, Non-U.S. Gov't Journal Article Observational Study |
GrantInformation_xml | – fundername: Canadian Institutes for Health Research grantid: 137772 – fundername: Canadian Institutes for Health Research grantid: FDN 143285 |
GroupedDBID | --- .-D .XZ .Z2 01R 0R~ 1J1 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6J9 6PF 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AASXQ AAUEB AAWTL AAXQO AAYEP ABASU ABBUW ABDIG ABJNI ABOCM ABPPZ ABVCZ ABXVJ ABZAD ACDDN ACEWG ACGFO ACGFS ACILI ACLDA ACOAL ACWDW ACWRI ACXJB ACXNZ ADGGA ADHPY AE6 AEBDS AENEX AFDTB AFEXH AFSOK AFUWQ AGINI AHOMT AHQNM AHVBC AIJEX AINUH AJIOK AJNWD AJZMW AKULP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AWKKM BOYCO BQLVK BYPQX C45 CGR CS3 CUY CVF DIWNM DU5 E.X EBS ECM EEVPB EIF ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- GNXGY GQDEL H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI L-C L7B N9A NPM N~7 N~B O9- OAG OAH OB4 OBH ODA ODMTH ODZKP OHH OHYEH OJAPA OL1 OLB OLG OLH OLU OLV OLW OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PONUX RIG RLZ S4R S4S TEORI TSPGW V2I VVN W3M WOQ WOW X3V X3W XXN XYM YCJ YFH YOC YOJ ZFV ZY1 ~9M .3C .55 .GJ 3O- AAQQT AAYOK AAYXX ACCJW ADFPA ADNKB AE3 AEETU AFFNX AHRYX AI. AJNYG BS7 CITATION DUNZO EJD FW0 J5H M18 N4W NEJ N~M OCUKA OHT ONV ORVUJ OUVQU P-K R58 T8P VH1 X7M ZCG ZGI ZXP ZZMQN 7X8 |
ID | FETCH-LOGICAL-c353t-df15101f70a65321ce1846406ee707e4cbd84b59116d841f1dca0559086578203 |
ISSN | 0090-3493 |
IngestDate | Sat Oct 26 05:53:33 EDT 2024 Fri Nov 22 02:34:29 EST 2024 Sat Nov 02 12:17:32 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Copyright © 2023 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c353t-df15101f70a65321ce1846406ee707e4cbd84b59116d841f1dca0559086578203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://orca.cardiff.ac.uk/id/eprint/162897/1/POSTCARDS%20paper%20for%20ORCA.pdf |
PMID | 37651262 |
PQID | 2860405599 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2860405599 crossref_primary_10_1097_CCM_0000000000006030 pubmed_primary_37651262 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Critical care medicine |
PublicationTitleAlternate | Crit Care Med |
PublicationYear | 2023 |
References | 38240521 - Crit Care Med. 2024 Feb 1;52(2):e105-e106 37971334 - Crit Care Med. 2023 Dec 1;51(12):1814-1816 Villar (R1-20240805) 2017; 23 González-Martin (R29-20240805) 2019; 33 Villar (R3-20240805) 2015; 5 Leisman (R22-20240805) 2020; 48 Gee (R38-20240805) 1990; 69 Huang (R15-20240805) 2021; 9 Moss (R7-20240805) 2019; 380 Villar (R18-20240805) 2011; 37 Villar (R9-20240805) 2020; 8 Guerin (R6-20240805) 2013; 368 Pirrachio (R12-20240805) 2015; 3 Rashid (R33-20240805) 2022; 131 Guerin (R50-20240805) 2020; 46 Morris (R48-20240805) 2018; 15 Cowan (R49-20240805) 2001; 24 Kallet (R51-20240805) 2019; 64 Villar (R4-20240805) 2021; 49 Vergouwe (R21-20240805) 2005; 58 Vincent (R25-20240805) 1998; 26 Møller (R42-20240805) 2020; 46 Villar (R19-20240805) 2013; 39 Liaw (R35-20240805) 2002; 2 Villar (R27-20240805) 2017; 45 Shiu (R40-20240805) 2006; 173 Ioannidis (R31-20240805) 2018; 319 Vrieze (R30-20240805) 2012; 17 Villar (R24-20240805) 2007; 176 Nemati (R13-20240805) 2018; 46 Villar (R41-20240805) 2018; 46 Brower (R5-20240805) 2000; 342 Gutierrez (R32-20240805) 2020; 24 Knaus (R23-20240805) 1985; 13 Morris (R47-20240805) 2021; 28 Villar (R26-20240805) 2016; 44 Collins (R17-20240805) 2015; 68 Steyerberg (R36-20240805) 2014; 35 Soubani (R39-20240805) 2014; 29 Sayed (R16-20240805) 2021; 25 Ranieri (R11-20240805) 2012; 307 Ferring (R2-20240805) 1997; 10 Villar (R20-20240805) 2022; 4 Scrucca (R28-20240805) 2013; 53 Ding (R14-20240805) 2019; 17 Kacmarek (R46-20240805) 2018; 6 Steyerberg (R52-20240805) 2010; 21 Maslove (R10-20240805) 2022; 28 Combes (R8-20240805) 2018; 378 Van Calster (R37-20240805) 2016; 74 Villar (R43-20240805) 2021; 12 Juschten (R44-20240805) 2021; 47 |
References_xml | – volume: 53 start-page: 1 year: 2013 ident: R28-20240805 article-title: GA: A package for genetic algorithms in R. publication-title: J Stat Softw doi: 10.18637/jss.v053.i04 contributor: fullname: Scrucca – volume: 46 start-page: 892 year: 2018 ident: R41-20240805 article-title: Is overall mortality the right composite endpoint in clinical trials of acute respiratory distress syndrome? publication-title: Crit Care Med doi: 10.1097/CCM.0000000000003022 contributor: fullname: Villar – volume: 15 start-page: S53 year: 2018 ident: R48-20240805 article-title: Human cognitive limitations. Broad, consistent, clinical application of physiological principles will require decision support. publication-title: An Am Thorac Soc doi: 10.1513/AnnalsATS.201706-449KV contributor: fullname: Morris – volume: 69 start-page: 822 year: 1990 ident: R38-20240805 article-title: Physiology of aging related to outcome in the adult respiratory distress syndrome. publication-title: J Appl Physiol (1985) doi: 10.1152/jappl.1990.69.3.822 contributor: fullname: Gee – volume: 64 start-page: 493 year: 2019 ident: R51-20240805 article-title: Characteristics of nonpulmonary organ dysfunction at onset of ARDS based on the Berlin definition. publication-title: Respir Care doi: 10.4187/respcare.06165 contributor: fullname: Kallet – volume: 378 start-page: 1965 year: 2018 ident: R8-20240805 article-title: Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. publication-title: N Engl J Med doi: 10.1056/NEJMoa1800385 contributor: fullname: Combes – volume: 49 start-page: e920 year: 2021 ident: R4-20240805 article-title: Stratification for identification of prognostic categories in the acute respiratory distress syndrome (SPIRES) score. publication-title: Crit Care Med doi: 10.1097/CCM.0000000000005142 contributor: fullname: Villar – volume: 23 start-page: 4 year: 2017 ident: R1-20240805 article-title: Golden anniversary of the acute respiratory distress syndrome: Still much work to do!. publication-title: Curr Opin Crit Care doi: 10.1097/MCC.0000000000000378 contributor: fullname: Villar – volume: 342 start-page: 1301 year: 2000 ident: R5-20240805 article-title: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. publication-title: N Engl J Med doi: 10.1056/NEJM200005043421801 contributor: fullname: Brower – volume: 176 start-page: 795 year: 2007 ident: R24-20240805 article-title: An early PEEP/FiO2 trial identifies different degrees of lung injury in patients with acute respiratory distress syndrome. publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200610-1534OC contributor: fullname: Villar – volume: 368 start-page: 2159 year: 2013 ident: R6-20240805 article-title: The PROSEVA Study Group: Prone positioning in severe acute respiratory distress syndrome. publication-title: N Engl J Med doi: 10.1056/NEJMoa1214103 contributor: fullname: Guerin – volume: 47 start-page: 422 year: 2021 ident: R44-20240805 article-title: Between-trial heterogeneity in ARDS research. publication-title: Intensive Care Med doi: 10.1007/s00134-021-06370-w contributor: fullname: Juschten – volume: 68 start-page: 112 year: 2015 ident: R17-20240805 article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2014.11.010 contributor: fullname: Collins – volume: 173 start-page: 686 year: 2006 ident: R40-20240805 article-title: Is there a safe plateau pressure threshold for patients with acute lung injury and acute respiratory distress syndrome? publication-title: Am J Respir Crit Care Med doi: 10.1164/ajrccm.173.6.686 contributor: fullname: Shiu – volume: 24 start-page: 101 year: 2020 ident: R32-20240805 article-title: Artificial intelligence in the intensive care unit. publication-title: Crit Care doi: 10.1186/s13054-020-2785-y contributor: fullname: Gutierrez – volume: 74 start-page: 167 year: 2016 ident: R37-20240805 article-title: A calibration hierarchy for risk models was defined: From utopia to empirical data. publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2015.12.005 contributor: fullname: Van Calster – volume: 2 start-page: 18 year: 2002 ident: R35-20240805 article-title: Classification and regression by randomForest. publication-title: R News contributor: fullname: Liaw – volume: 21 start-page: 128 year: 2010 ident: R52-20240805 article-title: Assessing the performance of prediction models: A framework for some traditional and novel measures. publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181c30fb2 contributor: fullname: Steyerberg – volume: 12 start-page: 774025 year: 2021 ident: R43-20240805 article-title: Unsuccessful and successful clinical trials in acute respiratory distress syndrome: Addressing physiology-based gaps. publication-title: Front Physiol doi: 10.3389/fphys.2021.774025 contributor: fullname: Villar – volume: 3 start-page: 42 year: 2015 ident: R12-20240805 article-title: Mortality prediction in intensive care units with the Super ICU Learner Algorith (SICULA): A population-based study. publication-title: Lancet Respir Med doi: 10.1016/S2213-2600(14)70239-5 contributor: fullname: Pirrachio – volume: 13 start-page: 818 year: 1985 ident: R23-20240805 article-title: APACHE II: A severity of disease classification system. publication-title: Crit Care Med doi: 10.1097/00003246-198510000-00009 contributor: fullname: Knaus – volume: 29 start-page: 183.e7 year: 2014 ident: R39-20240805 article-title: The outcome of cancer patients with acute respiratory distress syndrome. publication-title: J Crit Care doi: 10.1016/j.jcrc.2013.10.011 contributor: fullname: Soubani – volume: 28 start-page: 1330 year: 2021 ident: R47-20240805 article-title: Enabling a learning healthcare system with automated computer protocols that produce replicable and personalized clinical actions. publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocaa294 contributor: fullname: Morris – volume: 10 start-page: 1297 year: 1997 ident: R2-20240805 article-title: Is outcome from ARDS related to the severity of respiratory failure? publication-title: Eur Respir J doi: 10.1183/09031936.97.10061297 contributor: fullname: Ferring – volume: 28 start-page: 1141 year: 2022 ident: R10-20240805 article-title: Redefining critical illness. publication-title: Nature Med doi: 10.1038/s41591-022-01843-x contributor: fullname: Maslove – volume: 58 start-page: 475 year: 2005 ident: R21-20240805 article-title: Substantial effective sample sizes were required for external validation studies of predictive logistic regression models. publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2004.06.017 contributor: fullname: Vergouwe – volume: 17 start-page: 228 year: 2012 ident: R30-20240805 article-title: Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). publication-title: Psychol Methods doi: 10.1037/a0027127 contributor: fullname: Vrieze – volume: 46 start-page: 2385 year: 2020 ident: R50-20240805 article-title: Prone position in ARDS patients: Why, when, how and for whom. publication-title: Intensive Care Med doi: 10.1007/s00134-020-06306-w contributor: fullname: Guerin – volume: 9 start-page: 794 year: 2021 ident: R15-20240805 article-title: Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: A population-based study. publication-title: Ann Transl Med doi: 10.21037/atm-20-6624 contributor: fullname: Huang – volume: 380 start-page: 1997 year: 2019 ident: R7-20240805 article-title: Early neuromuscular blockade in the acute respiratory distress syndrome. publication-title: N Engl J Med doi: 10.1056/NEJMoa1901686 contributor: fullname: Moss – volume: 131 start-page: 102361 year: 2022 ident: R33-20240805 article-title: Artificial intelligence in acute respiratory distress syndrome: A systematic review. publication-title: Artif Intell Med doi: 10.1016/j.artmed.2022.102361 contributor: fullname: Rashid – volume: 25 start-page: 150 year: 2021 ident: R16-20240805 article-title: Novel criteria to classify ARDS severity using machine learning approach. publication-title: Crit Care doi: 10.1186/s13054-021-03566-w contributor: fullname: Sayed – volume: 45 start-page: 843 year: 2017 ident: R27-20240805 article-title: A quantile analysis of plateau and driving pressure: Effects on mortality in patients with acute respiratory distress syndrome receiving lung-protective ventilation. publication-title: Crit Care Med doi: 10.1097/CCM.0000000000002330 contributor: fullname: Villar – volume: 33 start-page: 462 year: 2019 ident: R29-20240805 article-title: Optimization of the prediction of financial problems in Spanish private health companies using genetic algorithm. publication-title: Gac Sanit contributor: fullname: González-Martin – volume: 37 start-page: 1932 year: 2011 ident: R18-20240805 article-title: The ALIEN study: Incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. publication-title: Intensive Care Med doi: 10.1007/s00134-011-2380-4 contributor: fullname: Villar – volume: 48 start-page: 623 year: 2020 ident: R22-20240805 article-title: Development and reporting of prediction models: Guidance for authors from editors of respiratory, sleep, and critical care journals. publication-title: Crit Care Med doi: 10.1097/CCM.0000000000004246 contributor: fullname: Leisman – volume: 319 start-page: 1429 year: 2018 ident: R31-20240805 article-title: The proposal to lower P value thresholds to 0.005. publication-title: JAMA doi: 10.1001/jama.2018.1536 contributor: fullname: Ioannidis – volume: 4 start-page: e0684 year: 2022 ident: R20-20240805 article-title: The PANDORA study: Prevalence and outcome of acute hypoxemic respiratory failure in the pre-COVID era. publication-title: Crit Care Explor doi: 10.1097/CCE.0000000000000684 contributor: fullname: Villar – volume: 24 start-page: 87 year: 2001 ident: R49-20240805 article-title: The magical number 4 in short-term memory: A reconsideration of mental storage capacity. publication-title: Behav Brain Sci doi: 10.1017/S0140525X01003922 contributor: fullname: Cowan – volume: 17 start-page: 326 year: 2019 ident: R14-20240805 article-title: Predictive model for acute respiratory distress syndrome events: A secondary analysis of a cohort study. publication-title: J Transl Med doi: 10.1186/s12967-019-2075-0 contributor: fullname: Ding – volume: 26 start-page: 1793 year: 1998 ident: R25-20240805 article-title: Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: Results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. publication-title: Crit Care Med doi: 10.1097/00003246-199811000-00016 contributor: fullname: Vincent – volume: 39 start-page: 583 year: 2013 ident: R19-20240805 article-title: A universal definition of ARDS: The PaO2/FiO2 ratio under s standard ventilatory setting – a prospective, multicenter validation study. publication-title: Intensive Care Med doi: 10.1007/s00134-012-2803-x contributor: fullname: Villar – volume: 5 start-page: e006812 year: 2015 ident: R3-20240805 article-title: Assessment of PaO2/FiO2 for stratification of patients with moderate and severe acute respiratory distress syndrome. publication-title: BMJ Open doi: 10.1136/bmjopen-2014-006812 contributor: fullname: Villar – volume: 6 start-page: 253 year: 2018 ident: R46-20240805 article-title: Prediction of ARDS outcome: What tool should I use? publication-title: Lancet Respir Med doi: 10.1016/S2213-2600(18)30098-5 contributor: fullname: Kacmarek – volume: 8 start-page: 267 year: 2020 ident: R9-20240805 article-title: Dexamethasone treatment for the acute respiratory distress syndrome: A multicentre, randomised controlled trial. publication-title: Lancet Respir Med doi: 10.1016/S2213-2600(19)30417-5 contributor: fullname: Villar – volume: 44 start-page: 1361 year: 2016 ident: R26-20240805 article-title: Age, PaO2/FiO2 and plateau pressure score: A proposal for a simple outcome score in patients with acute respiratory distress syndrome. publication-title: Crit Care Med doi: 10.1097/CCM.0000000000001653 contributor: fullname: Villar – volume: 46 start-page: 790 year: 2020 ident: R42-20240805 article-title: Focus on clinical trial interpretation. publication-title: Intensive Care Med doi: 10.1007/s00134-020-06000-x contributor: fullname: Møller – volume: 307 start-page: 2526 year: 2012 ident: R11-20240805 article-title: Acute respiratory distress syndrome: The Berlin definition. publication-title: JAMA contributor: fullname: Ranieri – volume: 46 start-page: 547 year: 2018 ident: R13-20240805 article-title: An interpretable machine learning model for accurate prediction of sepsis in the ICU. publication-title: Crit Care Med doi: 10.1097/CCM.0000000000002936 contributor: fullname: Nemati – volume: 35 start-page: 1925 year: 2014 ident: R36-20240805 article-title: Towards better clinical prediction models: Seven steps for development and an ABCD for validation. publication-title: Eur Heart J doi: 10.1093/eurheartj/ehu207 contributor: fullname: Steyerberg |
SSID | ssj0014573 |
Score | 2.5286405 |
Snippet | To assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with acute... OBJECTIVESTo assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 1638 |
SubjectTerms | Humans Intensive Care Units Lung Prospective Studies Respiration, Artificial - methods Respiratory Distress Syndrome - therapy |
Title | Predicting ICU Mortality in Acute Respiratory Distress Syndrome Patients Using Machine Learning: The Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37651262 https://search.proquest.com/docview/2860405599 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBabXSi9lL6bvphCDy1F1PLbvSVx0i1sNsvGKXsztiyHwOKUJL7sr-pP7EiWHGfZwvbQHIxtIukwn0fz0jeEfPSEJbLcZ9TnYURdm2c09yJO0WV288K1OC9lRvd0HpxfhfHYHR_1TM_M_bv_Kml8h7KWJ2f_QdrtpPgC71HmeEWp4_Vecr_YyNSLKmb-MVp8mSrzWpraqjWErAq47GTX45U-LDLXzAWSs3-lTr01xQRTVWwpDA_r0lRpdJaZ1TsuR6oi0EQiqlyNWksUd16xMetfxjJsEF7M5slIPsiYxLwluDWECab7gqpKu538_ynbJG2awpytTPMPB61b8H1d3ajMP7sWN1QyJKinuDr8ezcCvKmaATKUTg_GN2NUJcHQqRDSnW9DVMumM9l0tazFtQ4I6-CJ7XQKUYRR-Ba17KZLo9kRNAWuRr7d0e_Seu3YCuhrRnfuQ5rfeDRt-DH1z7d0DuqA9vt8lk4WZ2dpMr5KeuTERo2JCvtkMImTYZsQc73AMSc_o-DrXTMfWlZ_cZeU2ZQ8Jo-0vwODBqhPyJGonpIHUy3UZ-T3HkiAeIUWr7CqQOEVOngFg1cweAWDV1B4BY1XMHj9BohW6Cyi0QqIVjhEK6xLMGhVqyNA4VOL1c-gkPqcLCbjZHRKdRcRyh3P2dGiZHLfKQMr8z3HZlwwtLnRjhUisALh8rwIXdRPjPl4w0pW8MxCPxt9fdnqwXJekONqXYlXBBxRsDDyw6gIMzfLhaRuKz3HZ1HuuZHgfUKNBNJfDVlMaoo8UGLpbYn1yQcjphS1ukzVZZVY19vUDn3cXSUbYJ-8bOTXzogmAVrpvv36HqPfkId72L8lx7tNLd6R3rao32uE_QGvZ8RW |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Ovid |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+ICU+Mortality+in+Acute+Respiratory+Distress+Syndrome+Patients+Using+Machine+Learning%3A+The+Predicting+Outcome+and+STratifiCation+of+severity+in+ARDS+%28POSTCARDS%29+Study&rft.jtitle=Critical+care+medicine&rft.au=Villar%2C+Jes%C3%BAs&rft.au=Gonz%C3%A1lez-Mart%C3%ADn%2C+Jes%C3%BAs+M&rft.au=Hern%C3%A1ndez-Gonz%C3%A1lez%2C+Jer%C3%B3nimo&rft.au=Armengol%2C+Miguel+A&rft.date=2023-12-01&rft.eissn=1530-0293&rft.volume=51&rft.issue=12&rft.spage=1638&rft.epage=1649&rft_id=info:doi/10.1097%2FCCM.0000000000006030&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-3493&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-3493&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-3493&client=summon |