Corrosion protection of carbon steel using hydrotalcite/graphene oxide nanohybrid
Zinc aluminum hydrotalcite/graphene oxide (HTC-GO) nanohybrid as inhibition additive for organic coatings was prepared using the co-precipitation method. The synthesized HTC-GO was characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), tra...
Saved in:
Published in: | JCT research Vol. 16; no. 2; pp. 585 - 595 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
15-03-2019
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Zinc aluminum hydrotalcite/graphene oxide (HTC-GO) nanohybrid as inhibition additive for organic coatings was prepared using the co-precipitation method. The synthesized HTC-GO was characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, and thermogravimetric analysis. Surface charge properties of HTC-GO were evaluated with zeta potential measurement. The corrosion inhibition effect of HTC-GO on carbon steel in NaCl solution was investigated using electrochemical methods, energy-dispersive X-ray, and SEM. The effect of HTC-GO on corrosion resistance of epoxy coating applied on carbon steel was evaluated by salt spray test. It was shown that hydrotalcite structures were formed on GO surface, subsequently becoming hydrotalcite/graphene oxide nanohybrid. The results obtained by electrochemical measurements indicate that HTC-GO is an anodic corrosion inhibitor with an inhibition efficiency of about 92% at 1 g/L concentration. The presence of intercalated GO improved the barrier properties and adsorption of HTC-GO on steel surface. The corrosion resistance of epoxy coatings was improved with 1 wt% HTC-GO. |
---|---|
ISSN: | 1547-0091 1935-3804 2168-8028 |
DOI: | 10.1007/s11998-018-0139-3 |