Design, synthesis and stepwise optimization of nitrile-based inhibitors of cathepsins B and L
[Display omitted] Human cathepsin B (CatB) is an important biological target in cancer therapy. In this work, we performed a knowledge-based design approach and the synthesis of a new set of 19 peptide-like nitrile-based cathepsin inhibitors. Reported compounds were assayed against a panel of human...
Saved in:
Published in: | Bioorganic & medicinal chemistry Vol. 29; p. 115827 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
01-01-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Human cathepsin B (CatB) is an important biological target in cancer therapy. In this work, we performed a knowledge-based design approach and the synthesis of a new set of 19 peptide-like nitrile-based cathepsin inhibitors. Reported compounds were assayed against a panel of human cysteine proteases: CatB, CatL, CatK, and CatS. Three compounds (7h, 7i, and 7j) displayed nanomolar inhibition of CatB and selectivity over CatK and CatL. The selectivity was achieved by using the combination of a para biphenyl ring at P3, halogenated phenylalanine in P2 and Thr-O-Bz group at P1. Likewise, compounds 7i and 7j showed selective CatB inhibition among the panel of enzymes studied. We have also described a successful example of bioisosteric replacement of the amide bond for a sulfonamide one [7e → 6b], where we observed an increase in affinity and selectivity for CatB while lowering the compound lipophilicity (ilogP). Our knowledge-based design approach and the respective structure–activity relationships provide insights into the specific ligand-target interactions for therapeutically relevant cathepsins. |
---|---|
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2020.115827 |