Stimuli‐activatable nanomedicines for chemodynamic therapy of cancer
Chemodynamic therapy (CDT) takes the advantages of Fenton‐type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl radicals. As a novel modality for cancer treatment, CDT shows minimal invasiveness and high tumor specificity by responding to the acidic and the hig...
Saved in:
Published in: | Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Vol. 12; no. 4; pp. e1614 - n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
01-07-2020
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Chemodynamic therapy (CDT) takes the advantages of Fenton‐type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl radicals. As a novel modality for cancer treatment, CDT shows minimal invasiveness and high tumor specificity by responding to the acidic and the highly concentrated hydrogen peroxide microenvironment of tumor. The CDT approach for spatiotemporal controllable reactive oxygen species generation exhibits preferable therapeutic performance and satisfying biosafety. In this review article, we summarized the recent advances of stimuli‐activatable nanomedicines for CDT. We also overviewed the strategies for augmenting CDT performance, including increasing the catalytic efficacy through rational design of the nanomaterials, modulating the reaction condition, inputting external energy field, and regulating the tumor microenvironment. Furthermore, we discussed the potential and challenges of stimuli‐activatable nanomedicine for clinical translation and future development of CDT.
This article is categorized under:
Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease
Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Diagnostic Tools > In Vivo Nanodiagnostics and Imaging
Schematic illustration of activatable nanomedicine for chemodynamic therapy (CDT). The ˙OH produced by intratumoral Fenton or Fenton‐like reactions could kill cancer cells effectively. CDT shows its own merits for cancer treatment, including highly specific toward the TME, highly toxicity ˙OH production, and reverse the hypoxia and immunosuppressive TME. |
---|---|
AbstractList | Chemodynamic therapy (CDT) takes the advantages of Fenton‐type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl radicals. As a novel modality for cancer treatment, CDT shows minimal invasiveness and high tumor specificity by responding to the acidic and the highly concentrated hydrogen peroxide microenvironment of tumor. The CDT approach for spatiotemporal controllable reactive oxygen species generation exhibits preferable therapeutic performance and satisfying biosafety. In this review article, we summarized the recent advances of stimuli‐activatable nanomedicines for CDT. We also overviewed the strategies for augmenting CDT performance, including increasing the catalytic efficacy through rational design of the nanomaterials, modulating the reaction condition, inputting external energy field, and regulating the tumor microenvironment. Furthermore, we discussed the potential and challenges of stimuli‐activatable nanomedicine for clinical translation and future development of CDT.
This article is categorized under:
Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease
Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Diagnostic Tools > In Vivo Nanodiagnostics and Imaging
Schematic illustration of activatable nanomedicine for chemodynamic therapy (CDT). The ˙OH produced by intratumoral Fenton or Fenton‐like reactions could kill cancer cells effectively. CDT shows its own merits for cancer treatment, including highly specific toward the TME, highly toxicity ˙OH production, and reverse the hypoxia and immunosuppressive TME. Chemodynamic therapy (CDT) takes the advantages of Fenton‐type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl radicals. As a novel modality for cancer treatment, CDT shows minimal invasiveness and high tumor specificity by responding to the acidic and the highly concentrated hydrogen peroxide microenvironment of tumor. The CDT approach for spatiotemporal controllable reactive oxygen species generation exhibits preferable therapeutic performance and satisfying biosafety. In this review article, we summarized the recent advances of stimuli‐activatable nanomedicines for CDT. We also overviewed the strategies for augmenting CDT performance, including increasing the catalytic efficacy through rational design of the nanomaterials, modulating the reaction condition, inputting external energy field, and regulating the tumor microenvironment. Furthermore, we discussed the potential and challenges of stimuli‐activatable nanomedicine for clinical translation and future development of CDT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Chemodynamic therapy (CDT) takes the advantages of Fenton-type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl radicals. As a novel modality for cancer treatment, CDT shows minimal invasiveness and high tumor specificity by responding to the acidic and the highly concentrated hydrogen peroxide microenvironment of tumor. The CDT approach for spatiotemporal controllable reactive oxygen species generation exhibits preferable therapeutic performance and satisfying biosafety. In this review article, we summarized the recent advances of stimuli-activatable nanomedicines for CDT. We also overviewed the strategies for augmenting CDT performance, including increasing the catalytic efficacy through rational design of the nanomaterials, modulating the reaction condition, inputting external energy field, and regulating the tumor microenvironment. Furthermore, we discussed the potential and challenges of stimuli-activatable nanomedicine for clinical translation and future development of CDT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging. Chemodynamic therapy (CDT) takes the advantages of Fenton‐type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl radicals. As a novel modality for cancer treatment, CDT shows minimal invasiveness and high tumor specificity by responding to the acidic and the highly concentrated hydrogen peroxide microenvironment of tumor. The CDT approach for spatiotemporal controllable reactive oxygen species generation exhibits preferable therapeutic performance and satisfying biosafety. In this review article, we summarized the recent advances of stimuli‐activatable nanomedicines for CDT. We also overviewed the strategies for augmenting CDT performance, including increasing the catalytic efficacy through rational design of the nanomaterials, modulating the reaction condition, inputting external energy field, and regulating the tumor microenvironment. Furthermore, we discussed the potential and challenges of stimuli‐activatable nanomedicine for clinical translation and future development of CDT.This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic DiseaseNanotechnology Approaches to Biology > Nanoscale Systems in BiologyDiagnostic Tools > In Vivo Nanodiagnostics and Imaging |
Author | Xu, Zhiai Jin, Yilan Bajwa, Sadia Z. Wang, Weiqi Liu, Xiao Khan, Waheed S. Yu, Haijun |
Author_xml | – sequence: 1 givenname: Weiqi orcidid: 0000-0002-3296-7078 surname: Wang fullname: Wang, Weiqi organization: Shanghai Institute of Materia Medica, Chinese Academy of Sciences – sequence: 2 givenname: Yilan surname: Jin fullname: Jin, Yilan organization: Shanghai Institute of Materia Medica, Chinese Academy of Sciences – sequence: 3 givenname: Zhiai surname: Xu fullname: Xu, Zhiai organization: East China Normal University – sequence: 4 givenname: Xiao surname: Liu fullname: Liu, Xiao organization: Nantong University – sequence: 5 givenname: Sadia Z. surname: Bajwa fullname: Bajwa, Sadia Z. organization: National Institute for Biotechnology and Genetic Engineering (NIBGE) – sequence: 6 givenname: Waheed S. surname: Khan fullname: Khan, Waheed S. organization: National Institute for Biotechnology and Genetic Engineering (NIBGE) – sequence: 7 givenname: Haijun orcidid: 0000-0002-3398-0880 surname: Yu fullname: Yu, Haijun email: hjyu@simm.ac.cn organization: Shanghai Institute of Materia Medica, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32011108$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kL1OwzAQgC1URH9g4AVQJBYY0vpix0nGqqKAVJWBSoyW4zqqq8QudkLVjUfgGXkSUloYkJjuhu8-nb4-6hhrFEKXgIeAcTTaGmGGwICeoB5kJAsxptA57jEA66K-92uMGWVRfIa6JMIAgNMemj7XumpK_fn-IWSt30Qt8lIFrdBWaqmlNsoHhXWBXKnKLndGVFoG9Uo5sdkFtgikMFK5c3RaiNKri-McoMX0bjF5CGdP94-T8SyUJCY0LFS8zDOZ4DQRmUhYStv3MyaYxFJGBMskJRnJI0kTJikDRRSDFHBBovYwJQN0c9BunH1tlK95pb1UZSmMso3nEYkxIWlGoEWv_6Br2zjTPscjijNGGIW98PZASWe9d6rgG6cr4XYcMN-35fu2fN-2Za-OxiZv2_ySPzFbYHQAtrpUu_9N_GU-nn8rvwAdYYTy |
CitedBy_id | crossref_primary_10_3389_fbioe_2023_1101673 crossref_primary_10_1002_advs_202001549 crossref_primary_10_1002_adfm_202100386 crossref_primary_10_1038_s41401_022_00910_w crossref_primary_10_1088_1361_6528_ad21a3 crossref_primary_10_1016_j_cclet_2022_05_021 crossref_primary_10_3389_fchem_2020_598722 crossref_primary_10_1016_j_jddst_2020_101883 crossref_primary_10_1186_s12951_021_00952_y crossref_primary_10_1186_s12951_021_01003_2 crossref_primary_10_3389_fbioe_2023_1196839 crossref_primary_10_1038_s41401_020_0400_z crossref_primary_10_1016_j_ajps_2021_10_003 crossref_primary_10_1002_admi_202101173 crossref_primary_10_1016_j_mtchem_2024_101977 crossref_primary_10_3748_wjg_v29_i4_670 crossref_primary_10_1021_acsnano_1c01830 crossref_primary_10_1002_smll_202103868 crossref_primary_10_1186_s12951_022_01395_9 crossref_primary_10_1016_j_colsurfa_2021_126996 crossref_primary_10_3389_fchem_2021_650587 crossref_primary_10_1002_wnan_1715 crossref_primary_10_1016_j_jconrel_2023_08_036 crossref_primary_10_1007_s12274_020_2904_8 crossref_primary_10_1021_acsbiomaterials_1c01605 crossref_primary_10_1186_s13045_022_01320_5 crossref_primary_10_1002_adma_202104223 crossref_primary_10_1016_j_mtbio_2021_100197 crossref_primary_10_1186_s12951_023_01993_1 crossref_primary_10_1039_D0BM02064H crossref_primary_10_1016_j_colsurfb_2021_111803 crossref_primary_10_20517_2394_4722_2023_38 crossref_primary_10_1002_advs_202100241 crossref_primary_10_1016_j_bmc_2022_116987 crossref_primary_10_1016_j_cej_2023_147702 crossref_primary_10_1002_smtd_202200949 crossref_primary_10_1016_j_bioactmat_2024_04_016 crossref_primary_10_1002_adhm_202101984 crossref_primary_10_1016_j_nantod_2022_101689 crossref_primary_10_1186_s12951_024_02515_3 crossref_primary_10_1142_S1793545821410042 crossref_primary_10_1016_j_phrs_2020_105121 crossref_primary_10_1002_advs_202301279 crossref_primary_10_1007_s12274_022_5301_7 crossref_primary_10_1016_j_apmt_2021_100966 crossref_primary_10_3389_fmolb_2020_597634 crossref_primary_10_1186_s12951_022_01416_7 crossref_primary_10_3389_fphar_2022_1035954 crossref_primary_10_1039_D3MD00397C crossref_primary_10_1002_adhm_202101971 crossref_primary_10_1016_j_apsb_2022_02_027 crossref_primary_10_1016_j_nantod_2020_100946 crossref_primary_10_1007_s40820_020_00516_z crossref_primary_10_1002_adtp_202200208 |
Cites_doi | 10.1002/smll.201904397 10.1021/jacs.8b08714 10.1021/acs.nanolett.6b04269 10.1021/acs.nanolett.7b02031 10.1002/adma.201901778 10.1039/C5NR00706B 10.1002/smll.201901156 10.1002/adfm.201703674 10.1002/adfm.201901417 10.1002/adma.201704877 10.1002/adfm.201604300 10.1021/jacs.8b01072 10.1002/anie.201807595 10.1021/acsnano.5b06175 10.1038/nmat3776 10.1002/adfm.201906605 10.1002/adma.201701683 10.1002/advs.201801526 10.1002/smll.201803602 10.1002/adma.201902960 10.1002/wnan.1420 10.1021/nn300291r 10.1021/acsami.5b12523 10.1002/adfm.201601703 10.1021/jacs.9b03457 10.1002/anie.201805664 10.1021/acsnano.8b06399 10.1038/s41401-019-0281-1 10.1002/anie.201813702 10.1002/adfm.201903850 10.1038/nature12626 10.1039/C9SC00387H 10.7150/thno.37568 10.1002/adma.201602997 10.1038/s41467-017-00424-8 10.1002/anie.201510031 10.1039/C8CS00618K 10.1002/adma.201808278 10.1002/adfm.201706507 10.1039/C8CC03922D 10.1002/adfm.201905013 10.1002/wnan.1527 10.1002/adfm.201908365 10.1016/j.biomaterials.2019.04.023 10.1021/acs.chemrev.8b00626 10.1021/acs.nanolett.8b03178 10.1002/smll.201903016 10.1016/j.biomaterials.2017.06.035 10.1002/anie.201710144 10.1002/adfm.201404484 10.1039/C9BM01044K 10.1021/acs.nanolett.9b04012 10.1039/C8MH01176A 10.1002/anie.201712027 10.1002/wnan.1560 10.1021/acs.nanolett.8b00040 10.1002/adma.201906024 10.1038/s41467-018-03915-4 10.1002/jgm.3092 10.1016/j.cclet.2019.12.002 10.1002/jgm.3088 10.7150/thno.5411 10.1002/adma.201707509 |
ContentType | Journal Article |
Copyright | 2020 Wiley Periodicals, Inc. 2020 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2020 Wiley Periodicals, Inc. – notice: 2020 Wiley Periodicals LLC. |
DBID | NPM AAYXX CITATION 7QL 7QO 7QP 7TK 7U7 8FD C1K FR3 M7N P64 RC3 7X8 |
DOI | 10.1002/wnan.1614 |
DatabaseName | PubMed CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Genetics Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-0041 |
EndPage | n/a |
ExternalDocumentID | 10_1002_wnan_1614 32011108 WNAN1614 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31900990; 31671024; 51873228 – fundername: Natural Science Foundation of Nantong in China funderid: JC2018153 – fundername: Natural Science Foundation of Nantong in China grantid: JC2018153 – fundername: National Natural Science Foundation of China grantid: 31671024 – fundername: National Natural Science Foundation of China grantid: 51873228 – fundername: National Natural Science Foundation of China grantid: 31900990 |
GroupedDBID | --- 05W 0R~ 1OC 1VH 31~ 33P 4.4 53G 5DZ 8-0 8-1 8UM A00 AAESR AAHHS AANLZ AASGY AAXRX AAZKR ABCUV ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADEOM ADKYN ADMGS ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI DCZOG DRFUL DRMAN DRSTM EBS EJD EMOBN F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXMAN MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ SV3 WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR WYJ XV2 ZZTAW NPM AAMNL AAYXX CITATION 7QL 7QO 7QP 7TK 7U7 8FD C1K FR3 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3534-fe5db9c7087a9a768400296a6c0cc230c78393b2c476c461e3e61810f325db83 |
IEDL.DBID | 5DZ |
ISSN | 1939-5116 |
IngestDate | Wed Jul 24 18:05:47 EDT 2024 Thu Oct 10 17:26:37 EDT 2024 Thu Nov 21 22:12:13 EST 2024 Sat Sep 28 08:31:19 EDT 2024 Sat Aug 24 01:08:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | cancer nanomedicine Fenton reaction tumor microenvironment stimuli responsive chemodynamic therapy |
Language | English |
License | 2020 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3534-fe5db9c7087a9a768400296a6c0cc230c78393b2c476c461e3e61810f325db83 |
Notes | Funding information Natural Science Foundation of Nantong in China, Grant/Award Number: JC2018153; National Natural Science Foundation of China, Grant/Award Numbers: 31900990, 31671024, 51873228 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-3296-7078 0000-0002-3398-0880 |
PMID | 32011108 |
PQID | 2409636418 |
PQPubID | 2034620 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2350338931 proquest_journals_2409636418 crossref_primary_10_1002_wnan_1614 pubmed_primary_32011108 wiley_primary_10_1002_wnan_1614_WNAN1614 |
PublicationCentury | 2000 |
PublicationDate | July/August 2020 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July/August 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken |
PublicationTitle | Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology |
PublicationTitleAlternate | Wiley Interdiscip Rev Nanomed Nanobiotechnol |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | e_1_2_9_2_4_1 e_1_2_9_2_2_1 e_1_2_9_2_41_1 e_1_2_9_2_22_1 e_1_2_9_2_47_1 e_1_2_9_1_2_1 e_1_2_9_2_20_1 e_1_2_9_2_49_1 e_1_2_9_1_4_1 e_1_2_9_2_26_1 e_1_2_9_2_43_1 e_1_2_9_1_6_1 e_1_2_9_2_24_1 e_1_2_9_2_45_1 e_1_2_9_2_19_1 e_1_2_9_2_17_1 e_1_2_9_2_30_1 e_1_2_9_2_51_1 e_1_2_9_2_11_1 e_1_2_9_2_36_1 e_1_2_9_2_57_1 e_1_2_9_2_38_1 e_1_2_9_2_59_1 e_1_2_9_2_15_1 e_1_2_9_2_32_1 e_1_2_9_2_53_1 e_1_2_9_2_13_1 e_1_2_9_2_34_1 e_1_2_9_2_55_1 e_1_2_9_2_29_1 e_1_2_9_2_8_1 e_1_2_9_2_6_1 e_1_2_9_2_5_1 e_1_2_9_2_40_1 e_1_2_9_2_3_1 e_1_2_9_2_23_1 e_1_2_9_2_46_1 e_1_2_9_2_21_1 e_1_2_9_2_48_1 e_1_2_9_1_3_1 e_1_2_9_2_27_1 e_1_2_9_2_42_1 e_1_2_9_1_5_1 e_1_2_9_2_25_1 e_1_2_9_2_44_1 e_1_2_9_2_18_1 e_1_2_9_2_39_1 e_1_2_9_2_50_1 e_1_2_9_2_52_1 e_1_2_9_2_12_1 e_1_2_9_2_35_1 e_1_2_9_2_58_1 e_1_2_9_2_10_1 e_1_2_9_2_37_1 e_1_2_9_2_16_1 e_1_2_9_2_31_1 e_1_2_9_2_54_1 e_1_2_9_2_14_1 e_1_2_9_2_33_1 e_1_2_9_2_56_1 e_1_2_9_2_28_1 e_1_2_9_2_9_1 e_1_2_9_2_7_1 |
References_xml | – ident: e_1_2_9_2_18_1 doi: 10.1002/smll.201904397 – ident: e_1_2_9_2_26_1 doi: 10.1021/jacs.8b08714 – ident: e_1_2_9_2_27_1 doi: 10.1021/acs.nanolett.6b04269 – ident: e_1_2_9_2_39_1 doi: 10.1021/acs.nanolett.7b02031 – ident: e_1_2_9_2_45_1 doi: 10.1002/adma.201901778 – ident: e_1_2_9_2_12_1 doi: 10.1039/C5NR00706B – ident: e_1_2_9_2_34_1 doi: 10.1002/smll.201901156 – ident: e_1_2_9_2_58_1 doi: 10.1002/adfm.201703674 – ident: e_1_2_9_2_50_1 doi: 10.1002/adfm.201901417 – ident: e_1_2_9_2_6_1 doi: 10.1002/adma.201704877 – ident: e_1_2_9_2_33_1 doi: 10.1002/adfm.201604300 – ident: e_1_2_9_2_19_1 doi: 10.1021/jacs.8b01072 – ident: e_1_2_9_2_48_1 doi: 10.1002/anie.201807595 – ident: e_1_2_9_2_20_1 doi: 10.1021/acsnano.5b06175 – ident: e_1_2_9_2_28_1 doi: 10.1038/nmat3776 – ident: e_1_2_9_2_11_1 doi: 10.1002/adfm.201906605 – ident: e_1_2_9_2_37_1 doi: 10.1002/adma.201701683 – ident: e_1_2_9_2_2_1 doi: 10.1002/advs.201801526 – ident: e_1_2_9_2_54_1 doi: 10.1002/smll.201803602 – ident: e_1_2_9_2_10_1 doi: 10.1002/adma.201902960 – ident: e_1_2_9_2_55_1 doi: 10.1002/wnan.1420 – ident: e_1_2_9_2_4_1 doi: 10.1021/nn300291r – ident: e_1_2_9_2_17_1 doi: 10.1021/acsami.5b12523 – ident: e_1_2_9_2_35_1 doi: 10.1002/adfm.201601703 – ident: e_1_2_9_2_22_1 doi: 10.1021/jacs.9b03457 – ident: e_1_2_9_2_36_1 doi: 10.1002/anie.201805664 – ident: e_1_2_9_2_38_1 doi: 10.1021/acsnano.8b06399 – ident: e_1_2_9_2_14_1 doi: 10.1038/s41401-019-0281-1 – ident: e_1_2_9_2_25_1 doi: 10.1002/anie.201813702 – ident: e_1_2_9_2_5_1 doi: 10.1002/adfm.201903850 – ident: e_1_2_9_2_16_1 doi: 10.1038/nature12626 – ident: e_1_2_9_2_7_1 doi: 10.1039/C9SC00387H – ident: e_1_2_9_2_31_1 doi: 10.7150/thno.37568 – ident: e_1_2_9_2_41_1 doi: 10.1002/adma.201602997 – ident: e_1_2_9_1_3_1 doi: 10.1038/s41467-017-00424-8 – ident: e_1_2_9_2_52_1 doi: 10.1002/anie.201510031 – ident: e_1_2_9_2_23_1 doi: 10.1039/C8CS00618K – ident: e_1_2_9_2_9_1 doi: 10.1002/adma.201808278 – ident: e_1_2_9_1_6_1 doi: 10.1002/adfm.201706507 – ident: e_1_2_9_2_8_1 doi: 10.1039/C8CC03922D – ident: e_1_2_9_2_57_1 doi: 10.1002/adfm.201905013 – ident: e_1_2_9_1_4_1 doi: 10.1002/wnan.1527 – ident: e_1_2_9_2_3_1 doi: 10.1002/adfm.201908365 – ident: e_1_2_9_2_29_1 doi: 10.1016/j.biomaterials.2019.04.023 – ident: e_1_2_9_2_46_1 doi: 10.1021/acs.chemrev.8b00626 – ident: e_1_2_9_2_53_1 doi: 10.1021/acs.nanolett.8b03178 – ident: e_1_2_9_1_5_1 doi: 10.1002/smll.201903016 – ident: e_1_2_9_1_2_1 doi: 10.1016/j.biomaterials.2017.06.035 – ident: e_1_2_9_2_24_1 doi: 10.1002/anie.201710144 – ident: e_1_2_9_2_51_1 doi: 10.1002/adfm.201404484 – ident: e_1_2_9_2_44_1 doi: 10.1039/C9BM01044K – ident: e_1_2_9_2_13_1 doi: 10.1021/acs.nanolett.9b04012 – ident: e_1_2_9_2_56_1 doi: 10.1039/C8MH01176A – ident: e_1_2_9_2_21_1 doi: 10.1002/anie.201712027 – ident: e_1_2_9_2_32_1 doi: 10.1002/wnan.1560 – ident: e_1_2_9_2_47_1 doi: 10.1021/acs.nanolett.8b00040 – ident: e_1_2_9_2_30_1 doi: 10.1002/adma.201906024 – ident: e_1_2_9_2_40_1 doi: 10.1038/s41467-018-03915-4 – ident: e_1_2_9_2_42_1 doi: 10.1002/jgm.3092 – ident: e_1_2_9_2_59_1 doi: 10.1016/j.cclet.2019.12.002 – ident: e_1_2_9_2_43_1 doi: 10.1002/jgm.3088 – ident: e_1_2_9_2_15_1 doi: 10.7150/thno.5411 – ident: e_1_2_9_2_49_1 doi: 10.1002/adma.201707509 |
SSID | ssj0064625 |
Score | 2.5213556 |
SecondaryResourceType | review_article |
Snippet | Chemodynamic therapy (CDT) takes the advantages of Fenton‐type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl... Chemodynamic therapy (CDT) takes the advantages of Fenton-type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e1614 |
SubjectTerms | Cancer cancer nanomedicine Chemical energy Chemical reactions chemodynamic therapy Cytotoxicity Fenton reaction Free radicals Hydrogen peroxide Hydroxyl radicals Invasiveness Nanomaterials Nanotechnology Reactive oxygen species Stimuli stimuli responsive tumor microenvironment Tumors |
Title | Stimuli‐activatable nanomedicines for chemodynamic therapy of cancer |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwnan.1614 https://www.ncbi.nlm.nih.gov/pubmed/32011108 https://www.proquest.com/docview/2409636418 https://search.proquest.com/docview/2350338931 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sT3rw_ajWEsWDl9gku9nN4qlYS09FaEHxEpLNBjyYSB-KN3-Cv9Ff4kzSVIsIgrdAdrNhZnb3m52dbwDOEqUM99LUZkpzm0eJtNFt1rYfpJIgsJtoOnDrD-XgLuheE03OZZULU_JDLA7caGYU6zVN8CietL9IQ1-yKLtAvEJcoOgl0HU-v3tfrcKCi6LgKuITZSOoEBWrkOO1Fz2X96IfAHMZrxYbTm_jX7-6CetznGl1SsPYghWTbcPaN_bBHegNpw90Oerj7Z2yG56jKaVRWfiVvIq4TyzEtBbq9TFPytL1Vpmw9WrlqaXJYsa7MOpdj6769rysgq2Zz7idGj-JlZZOICMVUSCOQnMiEtrRGj0SLRE0sdjTXArNhWuYEYgDnJR52DFge1DP8swcgMW11Comxn3P4cZxYiPRXUwSzwRKqjRtwGkl3_CpJM8IS5pkLySZhCSTBjQryYfz-TMJEWfgyiC4GzTgZPEaLZ_CGVFm8hm2YRSCRbzlNmC_1NhiFEa4xnWw93mhmN-HD28HnQE9HP696RGseuR2F7d2m1CfjmfmGGqTZNaCGmM3rcIUPwH4u9-c |
link.rule.ids | 315,782,786,1405,1408,27933,27934,46064,46165,46488,46589 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5cPagH34_6rOLBS922ySYNeBHdZUVdhF3QW-mmKXiwlX0o3vwJ_kZ_iTPtdnURQfBWaKYpk0nyTSbzDcBRrJThfpI4TGnu8CiWDrrN2qkFiSQI7MWaDtyabdm6Dy7qRJNzWubCFPwQ4wM3mhn5ek0TnA6kq1-soS9plJ4gYOEVmOECDZESONhtuQ4LLvKSq4hQlIOwQpS8Qq5fHYtO7kY_IOYkYs23nMbi_352CRZGUNM-K2xjGaZMugLz3wgIV6HRHjzQ_aiPt3dKcHiOBpRJZeNXsjLo3rcR1to4tI9ZXFSvt4ucrVc7S2xNRtNbg06j3jlvOqPKCo5mNcadxNTirtLSDWSkIorFUXROREK7WqNToiXiJtb1NZdCc-EZZgRCATdhPgoGbB2m0yw1m2BzLbXqEum-73Ljul0j0WOMY98ESqokseCwVHD4VPBnhAVTsh-STkLSiQU7perD0RTqhwg1cHEQ3AssOBi_RuOniEaUmmyIbRhFYRFyeRZsFEM27oURtPFclD7OR-b37sO71lmLHrb-3nQfZpudm-vw-rJ1tQ1zPnnh-SXeHZge9IZmFyr9eLiXW-QnksXitg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BdGD78f6rOLBS922ySYNnkRdVpRFUNBb6eYBHmzF3VW8-RP8jf4SZ9rtqoggeCs0acpkJvkmk_kGYM8oZXnknM-U5j5PjfTRbdZ-M3aSIHBoNB24ta9k5zY-OSWanMMqF6bkhxgduJFlFOs1GfiDcY1P0tDnLM0OEK_wcZjgCMOJOJ-xy2oZFlwUFVcRoCgfUYWoaIWCqDHq-n0z-oEwvwPWYsdpzf7rX-dgZgg0vaNSM-ZhzGYLMP2FfnARWlf9O7od9f76RukNT2mf8qg8_Epehdx7HoJaDyf2Pjdl7XqvzNh68XLnaVKZxyW4bp1eH7f9YV0FX7Mm476zTdNVWgaxTFVKkTiKzYlU6EBrdEm0RNTEupHmUmguQsusQCAQOBZhx5gtQy3LM7sKHtdSqy5R7kcBt0HQtRL9RWMiGyupnKvDbiXf5KFkz0hKnuQoIZkkJJM6bFSST4YG1EsQaODSIHgY12Fn9BpVn-IZaWbzAbZhFINFwBXWYaWcsdEojIBNGGDv_WJifh8-uekcdehh7e9Nt2Hy8qSVXJx1ztdhKiIXvLjBuwG1_uPAbsJ4zwy2Cn38AOy14Vw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stimuli%E2%80%90activatable+nanomedicines+for+chemodynamic+therapy+of+cancer&rft.jtitle=Wiley+interdisciplinary+reviews.+Nanomedicine+and+nanobiotechnology&rft.au=Wang%2C+Weiqi&rft.au=Jin%2C+Yilan&rft.au=Xu%2C+Zhiai&rft.au=Liu%2C+Xiao&rft.date=2020-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1939-5116&rft.eissn=1939-0041&rft.volume=12&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwnan.1614&rft.externalDBID=10.1002%252Fwnan.1614&rft.externalDocID=WNAN1614 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-5116&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-5116&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-5116&client=summon |