Stimuli‐activatable nanomedicines for chemodynamic therapy of cancer

Chemodynamic therapy (CDT) takes the advantages of Fenton‐type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl radicals. As a novel modality for cancer treatment, CDT shows minimal invasiveness and high tumor specificity by responding to the acidic and the hig...

Full description

Saved in:
Bibliographic Details
Published in:Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Vol. 12; no. 4; pp. e1614 - n/a
Main Authors: Wang, Weiqi, Jin, Yilan, Xu, Zhiai, Liu, Xiao, Bajwa, Sadia Z., Khan, Waheed S., Yu, Haijun
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01-07-2020
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Chemodynamic therapy (CDT) takes the advantages of Fenton‐type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl radicals. As a novel modality for cancer treatment, CDT shows minimal invasiveness and high tumor specificity by responding to the acidic and the highly concentrated hydrogen peroxide microenvironment of tumor. The CDT approach for spatiotemporal controllable reactive oxygen species generation exhibits preferable therapeutic performance and satisfying biosafety. In this review article, we summarized the recent advances of stimuli‐activatable nanomedicines for CDT. We also overviewed the strategies for augmenting CDT performance, including increasing the catalytic efficacy through rational design of the nanomaterials, modulating the reaction condition, inputting external energy field, and regulating the tumor microenvironment. Furthermore, we discussed the potential and challenges of stimuli‐activatable nanomedicine for clinical translation and future development of CDT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Schematic illustration of activatable nanomedicine for chemodynamic therapy (CDT). The ˙OH produced by intratumoral Fenton or Fenton‐like reactions could kill cancer cells effectively. CDT shows its own merits for cancer treatment, including highly specific toward the TME, highly toxicity ˙OH production, and reverse the hypoxia and immunosuppressive TME.
AbstractList Chemodynamic therapy (CDT) takes the advantages of Fenton‐type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl radicals. As a novel modality for cancer treatment, CDT shows minimal invasiveness and high tumor specificity by responding to the acidic and the highly concentrated hydrogen peroxide microenvironment of tumor. The CDT approach for spatiotemporal controllable reactive oxygen species generation exhibits preferable therapeutic performance and satisfying biosafety. In this review article, we summarized the recent advances of stimuli‐activatable nanomedicines for CDT. We also overviewed the strategies for augmenting CDT performance, including increasing the catalytic efficacy through rational design of the nanomaterials, modulating the reaction condition, inputting external energy field, and regulating the tumor microenvironment. Furthermore, we discussed the potential and challenges of stimuli‐activatable nanomedicine for clinical translation and future development of CDT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Schematic illustration of activatable nanomedicine for chemodynamic therapy (CDT). The ˙OH produced by intratumoral Fenton or Fenton‐like reactions could kill cancer cells effectively. CDT shows its own merits for cancer treatment, including highly specific toward the TME, highly toxicity ˙OH production, and reverse the hypoxia and immunosuppressive TME.
Chemodynamic therapy (CDT) takes the advantages of Fenton‐type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl radicals. As a novel modality for cancer treatment, CDT shows minimal invasiveness and high tumor specificity by responding to the acidic and the highly concentrated hydrogen peroxide microenvironment of tumor. The CDT approach for spatiotemporal controllable reactive oxygen species generation exhibits preferable therapeutic performance and satisfying biosafety. In this review article, we summarized the recent advances of stimuli‐activatable nanomedicines for CDT. We also overviewed the strategies for augmenting CDT performance, including increasing the catalytic efficacy through rational design of the nanomaterials, modulating the reaction condition, inputting external energy field, and regulating the tumor microenvironment. Furthermore, we discussed the potential and challenges of stimuli‐activatable nanomedicine for clinical translation and future development of CDT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging
Chemodynamic therapy (CDT) takes the advantages of Fenton-type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl radicals. As a novel modality for cancer treatment, CDT shows minimal invasiveness and high tumor specificity by responding to the acidic and the highly concentrated hydrogen peroxide microenvironment of tumor. The CDT approach for spatiotemporal controllable reactive oxygen species generation exhibits preferable therapeutic performance and satisfying biosafety. In this review article, we summarized the recent advances of stimuli-activatable nanomedicines for CDT. We also overviewed the strategies for augmenting CDT performance, including increasing the catalytic efficacy through rational design of the nanomaterials, modulating the reaction condition, inputting external energy field, and regulating the tumor microenvironment. Furthermore, we discussed the potential and challenges of stimuli-activatable nanomedicine for clinical translation and future development of CDT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Chemodynamic therapy (CDT) takes the advantages of Fenton‐type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl radicals. As a novel modality for cancer treatment, CDT shows minimal invasiveness and high tumor specificity by responding to the acidic and the highly concentrated hydrogen peroxide microenvironment of tumor. The CDT approach for spatiotemporal controllable reactive oxygen species generation exhibits preferable therapeutic performance and satisfying biosafety. In this review article, we summarized the recent advances of stimuli‐activatable nanomedicines for CDT. We also overviewed the strategies for augmenting CDT performance, including increasing the catalytic efficacy through rational design of the nanomaterials, modulating the reaction condition, inputting external energy field, and regulating the tumor microenvironment. Furthermore, we discussed the potential and challenges of stimuli‐activatable nanomedicine for clinical translation and future development of CDT.This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic DiseaseNanotechnology Approaches to Biology > Nanoscale Systems in BiologyDiagnostic Tools > In Vivo Nanodiagnostics and Imaging
Author Xu, Zhiai
Jin, Yilan
Bajwa, Sadia Z.
Wang, Weiqi
Liu, Xiao
Khan, Waheed S.
Yu, Haijun
Author_xml – sequence: 1
  givenname: Weiqi
  orcidid: 0000-0002-3296-7078
  surname: Wang
  fullname: Wang, Weiqi
  organization: Shanghai Institute of Materia Medica, Chinese Academy of Sciences
– sequence: 2
  givenname: Yilan
  surname: Jin
  fullname: Jin, Yilan
  organization: Shanghai Institute of Materia Medica, Chinese Academy of Sciences
– sequence: 3
  givenname: Zhiai
  surname: Xu
  fullname: Xu, Zhiai
  organization: East China Normal University
– sequence: 4
  givenname: Xiao
  surname: Liu
  fullname: Liu, Xiao
  organization: Nantong University
– sequence: 5
  givenname: Sadia Z.
  surname: Bajwa
  fullname: Bajwa, Sadia Z.
  organization: National Institute for Biotechnology and Genetic Engineering (NIBGE)
– sequence: 6
  givenname: Waheed S.
  surname: Khan
  fullname: Khan, Waheed S.
  organization: National Institute for Biotechnology and Genetic Engineering (NIBGE)
– sequence: 7
  givenname: Haijun
  orcidid: 0000-0002-3398-0880
  surname: Yu
  fullname: Yu, Haijun
  email: hjyu@simm.ac.cn
  organization: Shanghai Institute of Materia Medica, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32011108$$D View this record in MEDLINE/PubMed
BookMark eNp1kL1OwzAQgC1URH9g4AVQJBYY0vpix0nGqqKAVJWBSoyW4zqqq8QudkLVjUfgGXkSUloYkJjuhu8-nb4-6hhrFEKXgIeAcTTaGmGGwICeoB5kJAsxptA57jEA66K-92uMGWVRfIa6JMIAgNMemj7XumpK_fn-IWSt30Qt8lIFrdBWaqmlNsoHhXWBXKnKLndGVFoG9Uo5sdkFtgikMFK5c3RaiNKri-McoMX0bjF5CGdP94-T8SyUJCY0LFS8zDOZ4DQRmUhYStv3MyaYxFJGBMskJRnJI0kTJikDRRSDFHBBovYwJQN0c9BunH1tlK95pb1UZSmMso3nEYkxIWlGoEWv_6Br2zjTPscjijNGGIW98PZASWe9d6rgG6cr4XYcMN-35fu2fN-2Za-OxiZv2_ySPzFbYHQAtrpUu_9N_GU-nn8rvwAdYYTy
CitedBy_id crossref_primary_10_3389_fbioe_2023_1101673
crossref_primary_10_1002_advs_202001549
crossref_primary_10_1002_adfm_202100386
crossref_primary_10_1038_s41401_022_00910_w
crossref_primary_10_1088_1361_6528_ad21a3
crossref_primary_10_1016_j_cclet_2022_05_021
crossref_primary_10_3389_fchem_2020_598722
crossref_primary_10_1016_j_jddst_2020_101883
crossref_primary_10_1186_s12951_021_00952_y
crossref_primary_10_1186_s12951_021_01003_2
crossref_primary_10_3389_fbioe_2023_1196839
crossref_primary_10_1038_s41401_020_0400_z
crossref_primary_10_1016_j_ajps_2021_10_003
crossref_primary_10_1002_admi_202101173
crossref_primary_10_1016_j_mtchem_2024_101977
crossref_primary_10_3748_wjg_v29_i4_670
crossref_primary_10_1021_acsnano_1c01830
crossref_primary_10_1002_smll_202103868
crossref_primary_10_1186_s12951_022_01395_9
crossref_primary_10_1016_j_colsurfa_2021_126996
crossref_primary_10_3389_fchem_2021_650587
crossref_primary_10_1002_wnan_1715
crossref_primary_10_1016_j_jconrel_2023_08_036
crossref_primary_10_1007_s12274_020_2904_8
crossref_primary_10_1021_acsbiomaterials_1c01605
crossref_primary_10_1186_s13045_022_01320_5
crossref_primary_10_1002_adma_202104223
crossref_primary_10_1016_j_mtbio_2021_100197
crossref_primary_10_1186_s12951_023_01993_1
crossref_primary_10_1039_D0BM02064H
crossref_primary_10_1016_j_colsurfb_2021_111803
crossref_primary_10_20517_2394_4722_2023_38
crossref_primary_10_1002_advs_202100241
crossref_primary_10_1016_j_bmc_2022_116987
crossref_primary_10_1016_j_cej_2023_147702
crossref_primary_10_1002_smtd_202200949
crossref_primary_10_1016_j_bioactmat_2024_04_016
crossref_primary_10_1002_adhm_202101984
crossref_primary_10_1016_j_nantod_2022_101689
crossref_primary_10_1186_s12951_024_02515_3
crossref_primary_10_1142_S1793545821410042
crossref_primary_10_1016_j_phrs_2020_105121
crossref_primary_10_1002_advs_202301279
crossref_primary_10_1007_s12274_022_5301_7
crossref_primary_10_1016_j_apmt_2021_100966
crossref_primary_10_3389_fmolb_2020_597634
crossref_primary_10_1186_s12951_022_01416_7
crossref_primary_10_3389_fphar_2022_1035954
crossref_primary_10_1039_D3MD00397C
crossref_primary_10_1002_adhm_202101971
crossref_primary_10_1016_j_apsb_2022_02_027
crossref_primary_10_1016_j_nantod_2020_100946
crossref_primary_10_1007_s40820_020_00516_z
crossref_primary_10_1002_adtp_202200208
Cites_doi 10.1002/smll.201904397
10.1021/jacs.8b08714
10.1021/acs.nanolett.6b04269
10.1021/acs.nanolett.7b02031
10.1002/adma.201901778
10.1039/C5NR00706B
10.1002/smll.201901156
10.1002/adfm.201703674
10.1002/adfm.201901417
10.1002/adma.201704877
10.1002/adfm.201604300
10.1021/jacs.8b01072
10.1002/anie.201807595
10.1021/acsnano.5b06175
10.1038/nmat3776
10.1002/adfm.201906605
10.1002/adma.201701683
10.1002/advs.201801526
10.1002/smll.201803602
10.1002/adma.201902960
10.1002/wnan.1420
10.1021/nn300291r
10.1021/acsami.5b12523
10.1002/adfm.201601703
10.1021/jacs.9b03457
10.1002/anie.201805664
10.1021/acsnano.8b06399
10.1038/s41401-019-0281-1
10.1002/anie.201813702
10.1002/adfm.201903850
10.1038/nature12626
10.1039/C9SC00387H
10.7150/thno.37568
10.1002/adma.201602997
10.1038/s41467-017-00424-8
10.1002/anie.201510031
10.1039/C8CS00618K
10.1002/adma.201808278
10.1002/adfm.201706507
10.1039/C8CC03922D
10.1002/adfm.201905013
10.1002/wnan.1527
10.1002/adfm.201908365
10.1016/j.biomaterials.2019.04.023
10.1021/acs.chemrev.8b00626
10.1021/acs.nanolett.8b03178
10.1002/smll.201903016
10.1016/j.biomaterials.2017.06.035
10.1002/anie.201710144
10.1002/adfm.201404484
10.1039/C9BM01044K
10.1021/acs.nanolett.9b04012
10.1039/C8MH01176A
10.1002/anie.201712027
10.1002/wnan.1560
10.1021/acs.nanolett.8b00040
10.1002/adma.201906024
10.1038/s41467-018-03915-4
10.1002/jgm.3092
10.1016/j.cclet.2019.12.002
10.1002/jgm.3088
10.7150/thno.5411
10.1002/adma.201707509
ContentType Journal Article
Copyright 2020 Wiley Periodicals, Inc.
2020 Wiley Periodicals LLC.
Copyright_xml – notice: 2020 Wiley Periodicals, Inc.
– notice: 2020 Wiley Periodicals LLC.
DBID NPM
AAYXX
CITATION
7QL
7QO
7QP
7TK
7U7
8FD
C1K
FR3
M7N
P64
RC3
7X8
DOI 10.1002/wnan.1614
DatabaseName PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
Genetics Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-0041
EndPage n/a
ExternalDocumentID 10_1002_wnan_1614
32011108
WNAN1614
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31900990; 31671024; 51873228
– fundername: Natural Science Foundation of Nantong in China
  funderid: JC2018153
– fundername: Natural Science Foundation of Nantong in China
  grantid: JC2018153
– fundername: National Natural Science Foundation of China
  grantid: 31671024
– fundername: National Natural Science Foundation of China
  grantid: 51873228
– fundername: National Natural Science Foundation of China
  grantid: 31900990
GroupedDBID ---
05W
0R~
1OC
1VH
31~
33P
4.4
53G
5DZ
8-0
8-1
8UM
A00
AAESR
AAHHS
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADKYN
ADMGS
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
DCZOG
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXMAN
MXSTM
MY.
MY~
O66
O9-
P2W
ROL
SUPJJ
SV3
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
WYJ
XV2
ZZTAW
NPM
AAMNL
AAYXX
CITATION
7QL
7QO
7QP
7TK
7U7
8FD
C1K
FR3
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c3534-fe5db9c7087a9a768400296a6c0cc230c78393b2c476c461e3e61810f325db83
IEDL.DBID 5DZ
ISSN 1939-5116
IngestDate Wed Jul 24 18:05:47 EDT 2024
Thu Oct 10 17:26:37 EDT 2024
Thu Nov 21 22:12:13 EST 2024
Sat Sep 28 08:31:19 EDT 2024
Sat Aug 24 01:08:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords cancer nanomedicine
Fenton reaction
tumor microenvironment
stimuli responsive
chemodynamic therapy
Language English
License 2020 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3534-fe5db9c7087a9a768400296a6c0cc230c78393b2c476c461e3e61810f325db83
Notes Funding information
Natural Science Foundation of Nantong in China, Grant/Award Number: JC2018153; National Natural Science Foundation of China, Grant/Award Numbers: 31900990, 31671024, 51873228
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-3296-7078
0000-0002-3398-0880
PMID 32011108
PQID 2409636418
PQPubID 2034620
PageCount 14
ParticipantIDs proquest_miscellaneous_2350338931
proquest_journals_2409636418
crossref_primary_10_1002_wnan_1614
pubmed_primary_32011108
wiley_primary_10_1002_wnan_1614_WNAN1614
PublicationCentury 2000
PublicationDate July/August 2020
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July/August 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
PublicationTitleAlternate Wiley Interdiscip Rev Nanomed Nanobiotechnol
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References e_1_2_9_2_4_1
e_1_2_9_2_2_1
e_1_2_9_2_41_1
e_1_2_9_2_22_1
e_1_2_9_2_47_1
e_1_2_9_1_2_1
e_1_2_9_2_20_1
e_1_2_9_2_49_1
e_1_2_9_1_4_1
e_1_2_9_2_26_1
e_1_2_9_2_43_1
e_1_2_9_1_6_1
e_1_2_9_2_24_1
e_1_2_9_2_45_1
e_1_2_9_2_19_1
e_1_2_9_2_17_1
e_1_2_9_2_30_1
e_1_2_9_2_51_1
e_1_2_9_2_11_1
e_1_2_9_2_36_1
e_1_2_9_2_57_1
e_1_2_9_2_38_1
e_1_2_9_2_59_1
e_1_2_9_2_15_1
e_1_2_9_2_32_1
e_1_2_9_2_53_1
e_1_2_9_2_13_1
e_1_2_9_2_34_1
e_1_2_9_2_55_1
e_1_2_9_2_29_1
e_1_2_9_2_8_1
e_1_2_9_2_6_1
e_1_2_9_2_5_1
e_1_2_9_2_40_1
e_1_2_9_2_3_1
e_1_2_9_2_23_1
e_1_2_9_2_46_1
e_1_2_9_2_21_1
e_1_2_9_2_48_1
e_1_2_9_1_3_1
e_1_2_9_2_27_1
e_1_2_9_2_42_1
e_1_2_9_1_5_1
e_1_2_9_2_25_1
e_1_2_9_2_44_1
e_1_2_9_2_18_1
e_1_2_9_2_39_1
e_1_2_9_2_50_1
e_1_2_9_2_52_1
e_1_2_9_2_12_1
e_1_2_9_2_35_1
e_1_2_9_2_58_1
e_1_2_9_2_10_1
e_1_2_9_2_37_1
e_1_2_9_2_16_1
e_1_2_9_2_31_1
e_1_2_9_2_54_1
e_1_2_9_2_14_1
e_1_2_9_2_33_1
e_1_2_9_2_56_1
e_1_2_9_2_28_1
e_1_2_9_2_9_1
e_1_2_9_2_7_1
References_xml – ident: e_1_2_9_2_18_1
  doi: 10.1002/smll.201904397
– ident: e_1_2_9_2_26_1
  doi: 10.1021/jacs.8b08714
– ident: e_1_2_9_2_27_1
  doi: 10.1021/acs.nanolett.6b04269
– ident: e_1_2_9_2_39_1
  doi: 10.1021/acs.nanolett.7b02031
– ident: e_1_2_9_2_45_1
  doi: 10.1002/adma.201901778
– ident: e_1_2_9_2_12_1
  doi: 10.1039/C5NR00706B
– ident: e_1_2_9_2_34_1
  doi: 10.1002/smll.201901156
– ident: e_1_2_9_2_58_1
  doi: 10.1002/adfm.201703674
– ident: e_1_2_9_2_50_1
  doi: 10.1002/adfm.201901417
– ident: e_1_2_9_2_6_1
  doi: 10.1002/adma.201704877
– ident: e_1_2_9_2_33_1
  doi: 10.1002/adfm.201604300
– ident: e_1_2_9_2_19_1
  doi: 10.1021/jacs.8b01072
– ident: e_1_2_9_2_48_1
  doi: 10.1002/anie.201807595
– ident: e_1_2_9_2_20_1
  doi: 10.1021/acsnano.5b06175
– ident: e_1_2_9_2_28_1
  doi: 10.1038/nmat3776
– ident: e_1_2_9_2_11_1
  doi: 10.1002/adfm.201906605
– ident: e_1_2_9_2_37_1
  doi: 10.1002/adma.201701683
– ident: e_1_2_9_2_2_1
  doi: 10.1002/advs.201801526
– ident: e_1_2_9_2_54_1
  doi: 10.1002/smll.201803602
– ident: e_1_2_9_2_10_1
  doi: 10.1002/adma.201902960
– ident: e_1_2_9_2_55_1
  doi: 10.1002/wnan.1420
– ident: e_1_2_9_2_4_1
  doi: 10.1021/nn300291r
– ident: e_1_2_9_2_17_1
  doi: 10.1021/acsami.5b12523
– ident: e_1_2_9_2_35_1
  doi: 10.1002/adfm.201601703
– ident: e_1_2_9_2_22_1
  doi: 10.1021/jacs.9b03457
– ident: e_1_2_9_2_36_1
  doi: 10.1002/anie.201805664
– ident: e_1_2_9_2_38_1
  doi: 10.1021/acsnano.8b06399
– ident: e_1_2_9_2_14_1
  doi: 10.1038/s41401-019-0281-1
– ident: e_1_2_9_2_25_1
  doi: 10.1002/anie.201813702
– ident: e_1_2_9_2_5_1
  doi: 10.1002/adfm.201903850
– ident: e_1_2_9_2_16_1
  doi: 10.1038/nature12626
– ident: e_1_2_9_2_7_1
  doi: 10.1039/C9SC00387H
– ident: e_1_2_9_2_31_1
  doi: 10.7150/thno.37568
– ident: e_1_2_9_2_41_1
  doi: 10.1002/adma.201602997
– ident: e_1_2_9_1_3_1
  doi: 10.1038/s41467-017-00424-8
– ident: e_1_2_9_2_52_1
  doi: 10.1002/anie.201510031
– ident: e_1_2_9_2_23_1
  doi: 10.1039/C8CS00618K
– ident: e_1_2_9_2_9_1
  doi: 10.1002/adma.201808278
– ident: e_1_2_9_1_6_1
  doi: 10.1002/adfm.201706507
– ident: e_1_2_9_2_8_1
  doi: 10.1039/C8CC03922D
– ident: e_1_2_9_2_57_1
  doi: 10.1002/adfm.201905013
– ident: e_1_2_9_1_4_1
  doi: 10.1002/wnan.1527
– ident: e_1_2_9_2_3_1
  doi: 10.1002/adfm.201908365
– ident: e_1_2_9_2_29_1
  doi: 10.1016/j.biomaterials.2019.04.023
– ident: e_1_2_9_2_46_1
  doi: 10.1021/acs.chemrev.8b00626
– ident: e_1_2_9_2_53_1
  doi: 10.1021/acs.nanolett.8b03178
– ident: e_1_2_9_1_5_1
  doi: 10.1002/smll.201903016
– ident: e_1_2_9_1_2_1
  doi: 10.1016/j.biomaterials.2017.06.035
– ident: e_1_2_9_2_24_1
  doi: 10.1002/anie.201710144
– ident: e_1_2_9_2_51_1
  doi: 10.1002/adfm.201404484
– ident: e_1_2_9_2_44_1
  doi: 10.1039/C9BM01044K
– ident: e_1_2_9_2_13_1
  doi: 10.1021/acs.nanolett.9b04012
– ident: e_1_2_9_2_56_1
  doi: 10.1039/C8MH01176A
– ident: e_1_2_9_2_21_1
  doi: 10.1002/anie.201712027
– ident: e_1_2_9_2_32_1
  doi: 10.1002/wnan.1560
– ident: e_1_2_9_2_47_1
  doi: 10.1021/acs.nanolett.8b00040
– ident: e_1_2_9_2_30_1
  doi: 10.1002/adma.201906024
– ident: e_1_2_9_2_40_1
  doi: 10.1038/s41467-018-03915-4
– ident: e_1_2_9_2_42_1
  doi: 10.1002/jgm.3092
– ident: e_1_2_9_2_59_1
  doi: 10.1016/j.cclet.2019.12.002
– ident: e_1_2_9_2_43_1
  doi: 10.1002/jgm.3088
– ident: e_1_2_9_2_15_1
  doi: 10.7150/thno.5411
– ident: e_1_2_9_2_49_1
  doi: 10.1002/adma.201707509
SSID ssj0064625
Score 2.5213556
SecondaryResourceType review_article
Snippet Chemodynamic therapy (CDT) takes the advantages of Fenton‐type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl...
Chemodynamic therapy (CDT) takes the advantages of Fenton-type reactions triggered by endogenous chemical energy to generate highly cytotoxic hydroxyl...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e1614
SubjectTerms Cancer
cancer nanomedicine
Chemical energy
Chemical reactions
chemodynamic therapy
Cytotoxicity
Fenton reaction
Free radicals
Hydrogen peroxide
Hydroxyl radicals
Invasiveness
Nanomaterials
Nanotechnology
Reactive oxygen species
Stimuli
stimuli responsive
tumor microenvironment
Tumors
Title Stimuli‐activatable nanomedicines for chemodynamic therapy of cancer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwnan.1614
https://www.ncbi.nlm.nih.gov/pubmed/32011108
https://www.proquest.com/docview/2409636418
https://search.proquest.com/docview/2350338931
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sT3rw_ajWEsWDl9gku9nN4qlYS09FaEHxEpLNBjyYSB-KN3-Cv9Ff4kzSVIsIgrdAdrNhZnb3m52dbwDOEqUM99LUZkpzm0eJtNFt1rYfpJIgsJtoOnDrD-XgLuheE03OZZULU_JDLA7caGYU6zVN8CietL9IQ1-yKLtAvEJcoOgl0HU-v3tfrcKCi6LgKuITZSOoEBWrkOO1Fz2X96IfAHMZrxYbTm_jX7-6CetznGl1SsPYghWTbcPaN_bBHegNpw90Oerj7Z2yG56jKaVRWfiVvIq4TyzEtBbq9TFPytL1Vpmw9WrlqaXJYsa7MOpdj6769rysgq2Zz7idGj-JlZZOICMVUSCOQnMiEtrRGj0SLRE0sdjTXArNhWuYEYgDnJR52DFge1DP8swcgMW11Comxn3P4cZxYiPRXUwSzwRKqjRtwGkl3_CpJM8IS5pkLySZhCSTBjQryYfz-TMJEWfgyiC4GzTgZPEaLZ_CGVFm8hm2YRSCRbzlNmC_1NhiFEa4xnWw93mhmN-HD28HnQE9HP696RGseuR2F7d2m1CfjmfmGGqTZNaCGmM3rcIUPwH4u9-c
link.rule.ids 315,782,786,1405,1408,27933,27934,46064,46165,46488,46589
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5cPagH34_6rOLBS922ySYNeBHdZUVdhF3QW-mmKXiwlX0o3vwJ_kZ_iTPtdnURQfBWaKYpk0nyTSbzDcBRrJThfpI4TGnu8CiWDrrN2qkFiSQI7MWaDtyabdm6Dy7qRJNzWubCFPwQ4wM3mhn5ek0TnA6kq1-soS9plJ4gYOEVmOECDZESONhtuQ4LLvKSq4hQlIOwQpS8Qq5fHYtO7kY_IOYkYs23nMbi_352CRZGUNM-K2xjGaZMugLz3wgIV6HRHjzQ_aiPt3dKcHiOBpRJZeNXsjLo3rcR1to4tI9ZXFSvt4ucrVc7S2xNRtNbg06j3jlvOqPKCo5mNcadxNTirtLSDWSkIorFUXROREK7WqNToiXiJtb1NZdCc-EZZgRCATdhPgoGbB2m0yw1m2BzLbXqEum-73Ljul0j0WOMY98ESqokseCwVHD4VPBnhAVTsh-STkLSiQU7perD0RTqhwg1cHEQ3AssOBi_RuOniEaUmmyIbRhFYRFyeRZsFEM27oURtPFclD7OR-b37sO71lmLHrb-3nQfZpudm-vw-rJ1tQ1zPnnh-SXeHZge9IZmFyr9eLiXW-QnksXitg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BdGD78f6rOLBS922ySYNnkRdVpRFUNBb6eYBHmzF3VW8-RP8jf4SZ9rtqoggeCs0acpkJvkmk_kGYM8oZXnknM-U5j5PjfTRbdZ-M3aSIHBoNB24ta9k5zY-OSWanMMqF6bkhxgduJFlFOs1GfiDcY1P0tDnLM0OEK_wcZjgCMOJOJ-xy2oZFlwUFVcRoCgfUYWoaIWCqDHq-n0z-oEwvwPWYsdpzf7rX-dgZgg0vaNSM-ZhzGYLMP2FfnARWlf9O7od9f76RukNT2mf8qg8_Epehdx7HoJaDyf2Pjdl7XqvzNh68XLnaVKZxyW4bp1eH7f9YV0FX7Mm476zTdNVWgaxTFVKkTiKzYlU6EBrdEm0RNTEupHmUmguQsusQCAQOBZhx5gtQy3LM7sKHtdSqy5R7kcBt0HQtRL9RWMiGyupnKvDbiXf5KFkz0hKnuQoIZkkJJM6bFSST4YG1EsQaODSIHgY12Fn9BpVn-IZaWbzAbZhFINFwBXWYaWcsdEojIBNGGDv_WJifh8-uekcdehh7e9Nt2Hy8qSVXJx1ztdhKiIXvLjBuwG1_uPAbsJ4zwy2Cn38AOy14Vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stimuli%E2%80%90activatable+nanomedicines+for+chemodynamic+therapy+of+cancer&rft.jtitle=Wiley+interdisciplinary+reviews.+Nanomedicine+and+nanobiotechnology&rft.au=Wang%2C+Weiqi&rft.au=Jin%2C+Yilan&rft.au=Xu%2C+Zhiai&rft.au=Liu%2C+Xiao&rft.date=2020-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1939-5116&rft.eissn=1939-0041&rft.volume=12&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwnan.1614&rft.externalDBID=10.1002%252Fwnan.1614&rft.externalDocID=WNAN1614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-5116&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-5116&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-5116&client=summon