Intestinal microbiota regulates tryptophan metabolism following oral infection with Toxoplasma gondii

Introduction The intestinal microbiota plays an important role in modulating host immune responses. Oral Toxoplasma gondii infection can promote intestinal inflammation in certain mice strains. The IDO‐AhR axis may control tryptophan (Trp) metabolism constituting an important immune regulatory mecha...

Full description

Saved in:
Bibliographic Details
Published in:Parasite immunology Vol. 42; no. 9; pp. e12720 - n/a
Main Authors: Santos, Liliane M., Commodaro, Alessandra G., Vasquez, Alicia R. R., Kohlhoff, Markus, de Paula Guerra, Daniel A., Coimbra, Roney S., Martins‐Filho, Olindo A., Teixeira‐Carvalho, Andrea, Rizzo, Luiz V., Vieira, Leda Q., Serra, Horacio M.
Format: Journal Article
Language:English
Published: England Wiley Subscription Services, Inc 01-09-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Introduction The intestinal microbiota plays an important role in modulating host immune responses. Oral Toxoplasma gondii infection can promote intestinal inflammation in certain mice strains. The IDO‐AhR axis may control tryptophan (Trp) metabolism constituting an important immune regulatory mechanism in inflammatory settings. Aims In the present study, we investigated the role of the intestinal microbiota on Trp metabolism during oral infection with T gondii. Methods and results Mice were treated with antibiotics for four weeks and then infected with T gondii by gavage. Histopathology and immune responses were evaluated 8 days after infection. We found that depletion of intestinal microbiota by antibiotics contributed to resistance against T gondii infection and led to reduced expression of AhR on dendritic and Treg cells. Mice depleted of Gram‐negative bacteria presented higher levels of systemic Trp, downregulation of AhR expression and increased resistance to infection whereas depletion of Gram‐positive bacteria did not affect susceptibility or expression of AhR on immune cells. Conclusion Our findings indicate that the intestinal microbiota can control Trp availability and provide a link between the AhR pathway and host‐microbiota interaction in acute infection with T gondii.
AbstractList IntroductionThe intestinal microbiota plays an important role in modulating host immune responses. Oral Toxoplasma gondii infection can promote intestinal inflammation in certain mice strains. The IDO‐AhR axis may control tryptophan (Trp) metabolism constituting an important immune regulatory mechanism in inflammatory settings.AimsIn the present study, we investigated the role of the intestinal microbiota on Trp metabolism during oral infection with T gondii.Methods and resultsMice were treated with antibiotics for four weeks and then infected with T gondii by gavage. Histopathology and immune responses were evaluated 8 days after infection. We found that depletion of intestinal microbiota by antibiotics contributed to resistance against T gondii infection and led to reduced expression of AhR on dendritic and Treg cells. Mice depleted of Gram‐negative bacteria presented higher levels of systemic Trp, downregulation of AhR expression and increased resistance to infection whereas depletion of Gram‐positive bacteria did not affect susceptibility or expression of AhR on immune cells.ConclusionOur findings indicate that the intestinal microbiota can control Trp availability and provide a link between the AhR pathway and host‐microbiota interaction in acute infection with T gondii.
The intestinal microbiota plays an important role in modulating host immune responses. Oral Toxoplasma gondii infection can promote intestinal inflammation in certain mice strains. The IDO-AhR axis may control tryptophan (Trp) metabolism constituting an important immune regulatory mechanism in inflammatory settings. In the present study, we investigated the role of the intestinal microbiota on Trp metabolism during oral infection with T gondii. Mice were treated with antibiotics for four weeks and then infected with T gondii by gavage. Histopathology and immune responses were evaluated 8 days after infection. We found that depletion of intestinal microbiota by antibiotics contributed to resistance against T gondii infection and led to reduced expression of AhR on dendritic and Treg cells. Mice depleted of Gram-negative bacteria presented higher levels of systemic Trp, downregulation of AhR expression and increased resistance to infection whereas depletion of Gram-positive bacteria did not affect susceptibility or expression of AhR on immune cells. Our findings indicate that the intestinal microbiota can control Trp availability and provide a link between the AhR pathway and host-microbiota interaction in acute infection with T gondii.
Introduction The intestinal microbiota plays an important role in modulating host immune responses. Oral Toxoplasma gondii infection can promote intestinal inflammation in certain mice strains. The IDO‐AhR axis may control tryptophan (Trp) metabolism constituting an important immune regulatory mechanism in inflammatory settings. Aims In the present study, we investigated the role of the intestinal microbiota on Trp metabolism during oral infection with T gondii. Methods and results Mice were treated with antibiotics for four weeks and then infected with T gondii by gavage. Histopathology and immune responses were evaluated 8 days after infection. We found that depletion of intestinal microbiota by antibiotics contributed to resistance against T gondii infection and led to reduced expression of AhR on dendritic and Treg cells. Mice depleted of Gram‐negative bacteria presented higher levels of systemic Trp, downregulation of AhR expression and increased resistance to infection whereas depletion of Gram‐positive bacteria did not affect susceptibility or expression of AhR on immune cells. Conclusion Our findings indicate that the intestinal microbiota can control Trp availability and provide a link between the AhR pathway and host‐microbiota interaction in acute infection with T gondii.
Author Coimbra, Roney S.
Kohlhoff, Markus
Martins‐Filho, Olindo A.
Commodaro, Alessandra G.
Santos, Liliane M.
Vasquez, Alicia R. R.
Teixeira‐Carvalho, Andrea
de Paula Guerra, Daniel A.
Serra, Horacio M.
Rizzo, Luiz V.
Vieira, Leda Q.
Author_xml – sequence: 1
  givenname: Liliane M.
  surname: Santos
  fullname: Santos, Liliane M.
  email: lilianemartins.bh16@gmail.com
  organization: Universidade Federal de Minas Gerais (UFMG)
– sequence: 2
  givenname: Alessandra G.
  surname: Commodaro
  fullname: Commodaro, Alessandra G.
  organization: Universidade Federal de São Paulo (UNIFESP)
– sequence: 3
  givenname: Alicia R. R.
  surname: Vasquez
  fullname: Vasquez, Alicia R. R.
  organization: Universidade Federal de Minas Gerais (UFMG)
– sequence: 4
  givenname: Markus
  surname: Kohlhoff
  fullname: Kohlhoff, Markus
  organization: Fundação Oswaldo Cruz‐FIOCRUZ
– sequence: 5
  givenname: Daniel A.
  surname: de Paula Guerra
  fullname: de Paula Guerra, Daniel A.
  organization: Fundação Oswaldo Cruz‐FIOCRUZ
– sequence: 6
  givenname: Roney S.
  surname: Coimbra
  fullname: Coimbra, Roney S.
  organization: Fundação Oswaldo Cruz‐FIOCRUZ
– sequence: 7
  givenname: Olindo A.
  surname: Martins‐Filho
  fullname: Martins‐Filho, Olindo A.
  organization: Fundação Oswaldo Cruz‐FIOCRUZ
– sequence: 8
  givenname: Andrea
  surname: Teixeira‐Carvalho
  fullname: Teixeira‐Carvalho, Andrea
  organization: Fundação Oswaldo Cruz‐FIOCRUZ
– sequence: 9
  givenname: Luiz V.
  surname: Rizzo
  fullname: Rizzo, Luiz V.
  organization: Instituto Israelita de Pesquisa e Ensino
– sequence: 10
  givenname: Leda Q.
  surname: Vieira
  fullname: Vieira, Leda Q.
  organization: Universidade Federal de Minas Gerais (UFMG)
– sequence: 11
  givenname: Horacio M.
  surname: Serra
  fullname: Serra, Horacio M.
  organization: CONICET
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32275066$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LxDAQhoMouq4e_AMS8KKHrvlo0vYo4seCooe9lyRN10ia1KRl3X9vtOpBcC7DMM-8MM8h2HXeaQBOMFrgVJe96RaYFATtgBmmnGUUkXwXzBDOcVaVtDwAhzG-IoQp4XQfHFBCCoY4nwG9dIOOg3HCws6o4KXxg4BBr0cr0gYOYdsPvn8RDnZ6ENJbEzvYemv9xrg19CFdGtdqNRjv4MYML3Dl331vRewEXHvXGHME9lphoz7-7nOwur1ZXd9nD093y-urh0xRRlEm8ooQppkQvBRSEU0LiVquJKlUQzibBs6bRkmqK9YgSQUu84JJpfOKzsH5FNsH_zamt-rORKWtFU77MdaElmWJC0pxQs_-oK9-DMlConJKGMaMkURdTFQSE2PQbd0H04mwrTGqP9XXSX39pT6xp9-Jo-x080v-uE7A5QRsjNXb_5Pq5-XjFPkB6NmRbA
CitedBy_id crossref_primary_10_1186_s40168_023_01681_0
crossref_primary_10_3389_fimmu_2022_1024998
crossref_primary_10_3390_metabo11020061
crossref_primary_10_1128_iai_00229_22
crossref_primary_10_3390_app10186421
Cites_doi 10.1113/jphysiol.2009.172742
10.3389/fimmu.2014.00551
10.1002/em.20588
10.1038/nm.4102
10.1096/fj.09-150920
10.1093/infdis/jir621
10.1016/S1074-7613(04)00107-4
10.1128/IAI.70.2.779-786.2002
10.1016/j.chom.2018.05.003
10.1136/gutjnl-2014-308820
10.1016/j.gene.2011.06.002
10.1073/pnas.0812874106
10.1016/0003-2697(82)90118-X
10.1124/mol.113.091165
10.1038/nri1457
10.1128/IAI.72.5.2723-2730.2004
10.1084/jem.20070602
10.1126/science.1187703
10.1128/IAI.44.2.211-216.1984
10.3389/fimmu.2019.00631
10.1007/s12035-017-0706-0
10.4049/jimmunol.166.10.6332
10.1016/j.celrep.2017.10.114
10.1155/2010/505694
10.4049/jimmunol.177.12.8785
10.1371/journal.pone.0023522
10.1038/nature06881
10.1038/nature24661
10.1016/j.it.2016.08.007
10.1038/ni.2508
10.1046/j.1440-1711.2003.t01-1-01177.x
10.1111/pim.12164
10.1016/j.immuni.2009.10.001
10.1111/j.1550-7408.2008.00345.x
10.1128/mBio.00935-19
10.1074/jbc.M700669200
10.1136/gut.2006.104497
10.1128/IAI.70.2.859-868.2002
10.4049/jimmunol.175.11.7348
10.1038/nature21080
10.1038/s41385-018-0019-2
10.1152/ajpgi.00413.2017
10.1126/science.1220961
10.1038/s41598-018-31033-0
10.4049/jimmunol.172.7.4100
10.1073/pnas.1000087107
10.1016/j.cell.2004.07.002
10.1016/j.immuni.2018.07.010
10.1128/IAI.62.6.2277-2284.1994
10.1128/IAI.00575-16
10.1016/j.chom.2017.06.007
10.1146/annurev-immunol-030409-101330
10.3389/fcimb.2018.00013
10.1128/CMR.05013-11
10.1097/COH.0000000000000234
10.1038/mp.2012.77
10.1038/sj.cr.7290282
10.1002/jssc.201700184
10.1016/j.cyto.2012.04.022
10.3389/fmicb.2017.02306
10.1371/journal.pone.0128335
10.1038/nature10491
10.1073/pnas.1009201107
10.1016/j.immuni.2013.08.003
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
2020 John Wiley & Sons Ltd.
Copyright © 2020 John Wiley & Sons Ltd
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
– notice: 2020 John Wiley & Sons Ltd.
– notice: Copyright © 2020 John Wiley & Sons Ltd
DBID NPM
AAYXX
CITATION
7T5
H94
M7N
7X8
DOI 10.1111/pim.12720
DatabaseName PubMed
CrossRef
Immunology Abstracts
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
AIDS and Cancer Research Abstracts
Immunology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE - Academic
PubMed

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1365-3024
EndPage n/a
ExternalDocumentID 10_1111_pim_12720
32275066
PIM12720
Genre article
Journal Article
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  funderid: 400274/2014‐0
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  funderid: 88881.030321/2013‐01
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 400274/2014-0
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  grantid: 88881.030321/2013-01
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHTB
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABPEJ
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOETA
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPT
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YNT
ZXP
ZZTAW
~IA
~KM
~WT
NPM
AAMNL
AAYXX
CITATION
7T5
H94
M7N
7X8
ID FETCH-LOGICAL-c3530-a49225e5aa68abc2e37b0f6cb29cd265b0f6cb66ddcb3e95d0b3a18475bce493
IEDL.DBID 33P
ISSN 0141-9838
IngestDate Fri Aug 16 04:28:29 EDT 2024
Thu Oct 10 16:08:35 EDT 2024
Thu Nov 21 21:33:54 EST 2024
Sat Sep 28 08:27:26 EDT 2024
Sat Aug 24 01:05:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords microbiota
Toxoplasma gondii
intestinal inflammation
antibiotics
tryptophan
Language English
License 2020 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3530-a49225e5aa68abc2e37b0f6cb29cd265b0f6cb66ddcb3e95d0b3a18475bce493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32275066
PQID 2432511552
PQPubID 2045118
PageCount 13
ParticipantIDs proquest_miscellaneous_2388817331
proquest_journals_2432511552
crossref_primary_10_1111_pim_12720
pubmed_primary_32275066
wiley_primary_10_1111_pim_12720_PIM12720
PublicationCentury 2000
PublicationDate September 2020
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Parasite immunology
PublicationTitleAlternate Parasite Immunol
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
2011; 478
2015; 37
2017; 8
2004; 20
2005; 175
2010; 107
2019; 10
2004; 4
2011; 52
2012; 59
2017; 551
2012; 205
2016; 37
2018; 49
1994; 62
2006; 177
2013; 18
2018; 8
2004; 72
2014; 5
2013; 14
2010; 24
2010; 28
2004; 172
2016; 84
2012; 25
2012; 337
2011; 485
2001; 166
2007; 204
2010; 2010
2003; 81
2007; 282
2010; 328
2017; 22
1984; 44
2017; 21
2015; 10
1982; 126
2008; 55
2018; 23
2014; 85
2011; 6
2007; 56
2016; 11
2011; 108
2013; 39
2009; 31
2018; 315
2015; 64
2002; 70
2008; 453
2005; 15
2018; 55
2018; 11
2004; 118
2017; 542
2009; 587
2009; 106
2016; 22
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 14
  start-page: 136
  issue: 2
  year: 2013
  end-page: 142
  article-title: Parasite‐induced TH1 cells and intestinal dysbiosis cooperate in IFN‐gamma‐dependent elimination of Paneth cells
  publication-title: Nat Immunol
– volume: 587
  start-page: 4159
  issue: Pt 17
  year: 2009
  end-page: 4167
  article-title: The role of the intestinal microbiota in enteric infection
  publication-title: J Physiol
– volume: 485
  start-page: 22
  issue: 1
  year: 2011
  end-page: 31
  article-title: Molecular evolution of bacterial indoleamine 2,3‐dioxygenase
  publication-title: Gene
– volume: 85
  start-page: 777
  issue: 5
  year: 2014
  end-page: 788
  article-title: Microbiome‐derived tryptophan metabolites and their aryl hydrocarbon receptor‐dependent agonist and antagonist activities
  publication-title: Mol Pharmacol
– volume: 337
  start-page: 1553
  issue: 6101
  year: 2012
  end-page: 1556
  article-title: Acute gastrointestinal infection induces long‐lived microbiota‐specific T cell responses
  publication-title: Science
– volume: 55
  start-page: 5255
  issue: 6
  year: 2018
  end-page: 5268
  article-title: Vitamin B6 reduces neurochemical and long‐term cognitive alterations after polymicrobial sepsis: involvement of the kynurenine pathway modulation
  publication-title: Mol Neurobiol
– volume: 31
  start-page: 772
  issue: 5
  year: 2009
  end-page: 786
  article-title: Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection
  publication-title: Immunity
– volume: 205
  start-page: 152
  issue: 1
  year: 2012
  end-page: 161
  article-title: Opposing biological functions of tryptophan catabolizing enzymes during intracellular infection
  publication-title: J Infect Dis
– volume: 5
  start-page: 551
  year: 2014
  article-title: Aryl hydrocarbon receptor and kynurenine: recent advances in autoimmune disease research
  publication-title: Front Immunol
– volume: 37
  start-page: 108
  issue: 3
  year: 2015
  end-page: 117
  article-title: The gut mucosal immune response to Toxoplasma gondii
  publication-title: Parasite Immunol
– volume: 21
  start-page: 2277
  issue: 8
  year: 2017
  end-page: 2290
  article-title: The aryl hydrocarbon receptor preferentially marks and promotes gut regulatory T cells
  publication-title: Cell Rep
– volume: 44
  start-page: 211
  issue: 2
  year: 1984
  end-page: 216
  article-title: Inhibition of growth of Toxoplasma gondii in cultured fibroblasts by human recombinant gamma interferon
  publication-title: Infect Immun
– volume: 28
  start-page: 623
  year: 2010
  end-page: 667
  article-title: Intestinal bacteria and the regulation of immune cell homeostasis
  publication-title: Annu Rev Immunol
– volume: 62
  start-page: 2277
  issue: 6
  year: 1994
  end-page: 2284
  article-title: Antiparasitic and antiproliferative effects of indoleamine 2,3‐dioxygenase enzyme expression in human fibroblasts
  publication-title: Infect Immun
– volume: 39
  start-page: 372
  issue: 2
  year: 2013
  end-page: 385
  article-title: Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin‐22
  publication-title: Immunity
– volume: 282
  start-page: 23778
  issue: 33
  year: 2007
  end-page: 23787
  article-title: Post‐translational regulation of human indoleamine 2,3‐dioxygenase activity by nitric oxide
  publication-title: J Biol Chem
– volume: 15
  start-page: 167
  issue: 3
  year: 2005
  end-page: 175
  article-title: Indoleamine 2, 3‐dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines
  publication-title: Cell Res
– volume: 126
  start-page: 131
  issue: 1
  year: 1982
  end-page: 138
  article-title: Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids
  publication-title: Anal Biochem
– volume: 478
  start-page: 197
  issue: 7368
  year: 2011
  end-page: 203
  article-title: An endogenous tumour‐promoting ligand of the human aryl hydrocarbon receptor
  publication-title: Nature
– volume: 453
  start-page: 106
  issue: 7191
  year: 2008
  end-page: 109
  article-title: The aryl hydrocarbon receptor links TH17‐cell‐mediated autoimmunity to environmental toxins
  publication-title: Nature
– volume: 177
  start-page: 8785
  issue: 12
  year: 2006
  end-page: 8795
  article-title: Gram‐negative bacteria aggravate murine small intestinal Th1‐type immunopathology following oral infection with Toxoplasma gondii
  publication-title: J Immunol
– volume: 22
  start-page: 598
  issue: 6
  year: 2016
  end-page: 605
  article-title: CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands
  publication-title: Nat Med
– volume: 4
  start-page: 762
  issue: 10
  year: 2004
  end-page: 774
  article-title: IDO expression by dendritic cells: tolerance and tryptophan catabolism
  publication-title: Nat Rev Immunol
– volume: 204
  start-page: 1775
  issue: 8
  year: 2007
  end-page: 1785
  article-title: Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid
  publication-title: J Exp Med
– volume: 70
  start-page: 779
  issue: 2
  year: 2002
  end-page: 786
  article-title: L‐tryptophan‐L‐kynurenine pathway metabolism accelerated by Toxoplasma gondii infection is abolished in gamma interferon‐gene‐deficient mice: cross‐regulation between inducible nitric oxide synthase and indoleamine‐2,3‐dioxygenase
  publication-title: Infect Immun
– volume: 24
  start-page: 2689
  issue: 8
  year: 2010
  end-page: 2701
  article-title: Indoleamine 2,3‐dioxigenase (IDO) is critical for host resistance against Trypanosoma cruzi
  publication-title: FASEB J
– volume: 11
  start-page: 182
  issue: 2
  year: 2016
  end-page: 190
  article-title: Microbial translocation and microbiome dysbiosis in HIV‐associated immune activation
  publication-title: Curr Opin HIV AIDS
– volume: 315
  start-page: G220
  issue: 2
  year: 2018
  end-page: G230
  article-title: An endogenous aryl hydrocarbon receptor ligand, ITE, induces regulatory T cells and ameliorates experimental colitis
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 118
  start-page: 229
  issue: 2
  year: 2004
  end-page: 241
  article-title: Recognition of commensal microflora by toll‐like receptors is required for intestinal homeostasis
  publication-title: Cell
– volume: 56
  start-page: 941
  issue: 7
  year: 2007
  end-page: 948
  article-title: Exacerbation of murine ileitis by Toll‐like receptor 4 mediated sensing of lipopolysaccharide from commensal Escherichia coli
  publication-title: Gut
– volume: 106
  start-page: 3698
  issue: 10
  year: 2009
  end-page: 3703
  article-title: Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 13
  year: 2018
  article-title: Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism
  publication-title: Front Cell Infect Microbiol
– volume: 81
  start-page: 247
  issue: 4
  year: 2003
  end-page: 265
  article-title: Tryptophan and the immune response
  publication-title: Immunol Cell Biol
– volume: 20
  start-page: 623
  issue: 5
  year: 2004
  end-page: 635
  article-title: Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology
  publication-title: Immunity
– volume: 64
  start-page: 1732
  issue: 11
  year: 2015
  end-page: 1743
  article-title: Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks
  publication-title: Gut
– volume: 107
  start-page: 20768
  issue: 48
  year: 2010
  end-page: 20773
  article-title: An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis
  publication-title: Proc Natl Acad Sci USA
– volume: 2010
  start-page: 505694
  year: 2010
  article-title: The unexpected role for the aryl hydrocarbon receptor on susceptibility to experimental toxoplasmosis
  publication-title: J Biomed Biotechnol
– volume: 40
  start-page: 3020
  issue: 15
  year: 2017
  end-page: 3045
  article-title: Chromatographic analysis of tryptophan metabolites
  publication-title: J Sep Sci
– volume: 72
  start-page: 2723
  issue: 5
  year: 2004
  end-page: 2730
  article-title: Nitric oxide‐mediated regulation of gamma interferon‐induced bacteriostasis: inhibition and degradation of human indoleamine 2,3‐dioxygenase
  publication-title: Infect Immun
– volume: 22
  start-page: 25
  issue: 1
  year: 2017
  end-page: 37
  article-title: Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation
  publication-title: Cell Host Microbe
– volume: 59
  start-page: 245
  issue: 2
  year: 2012
  end-page: 251
  article-title: Inhibition of increased indoleamine 2,3‐dioxygenase activity attenuates Toxoplasma gondii replication in the lung during acute infection
  publication-title: Cytokine
– volume: 11
  start-page: 1024
  issue: 4
  year: 2018
  end-page: 1038
  article-title: Aryl hydrocarbon receptor and intestinal immunity
  publication-title: Mucosal Immunol
– volume: 108
  start-page: 4554
  issue: Suppl 1
  year: 2011
  end-page: 4561
  article-title: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation
  publication-title: Proc Natl Acad Sci USA
– volume: 166
  start-page: 6332
  issue: 10
  year: 2001
  end-page: 6340
  article-title: Antioxidants inhibit indoleamine 2,3‐dioxygenase in IFN‐gamma‐activated human macrophages: posttranslational regulation by pyrrolidine dithiocarbamate
  publication-title: J Immunol
– volume: 6
  issue: 8
  year: 2011
  article-title: Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FoxP3 and IL‐17 expression and amelioration of experimental colitis
  publication-title: PLoS ONE
– volume: 10
  start-page: 3
  year: 2019
  article-title: Infection‐induced intestinal dysbiosis is mediated by macrophage activation and nitrate production
  publication-title: MBio
– volume: 18
  start-page: 666
  issue: 6
  year: 2013
  end-page: 673
  article-title: The microbiome‐gut‐brain axis during early life regulates the hippocampal serotonergic system in a sex‐dependent manner
  publication-title: Mol Psychiatry
– volume: 8
  start-page: 2306
  year: 2017
  article-title: Antibiotic‐induced alterations in gut microbiota are associated with changes in glucose metabolism in healthy mice
  publication-title: Front Microbiol
– volume: 49
  start-page: 353
  issue: 2
  year: 2018
  end-page: 362
  article-title: The environmental sensor ahr protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity
  publication-title: Immunity
– volume: 52
  start-page: 81
  issue: 2
  year: 2011
  end-page: 104
  article-title: Possible roles of excess tryptophan metabolites in cancer
  publication-title: Environ Mol Mutagen
– volume: 10
  issue: 5
  year: 2015
  article-title: The group 3 innate lymphoid cell defect in aryl hydrocarbon receptor deficient mice is associated with T cell hyperactivation during intestinal infection
  publication-title: PLoS ONE
– volume: 37
  start-page: 647
  issue: 10
  year: 2016
  end-page: 658
  article-title: The Role of the Microbiota in Shaping Infectious Immunity
  publication-title: Trends Immunol
– volume: 172
  start-page: 4100
  issue: 7
  year: 2004
  end-page: 4110
  article-title: Ligation of B7–1/B7‐2 by human CD4+ T cells triggers indoleamine 2,3‐dioxygenase activity in dendritic cells
  publication-title: J Immunol
– volume: 551
  start-page: 648
  issue: 7682
  year: 2017
  end-page: 652
  article-title: A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites
  publication-title: Nature
– volume: 25
  start-page: 264
  issue: 2
  year: 2012
  end-page: 296
  article-title: Epidemiology of and diagnostic strategies for toxoplasmosis
  publication-title: Clin Microbiol Rev
– volume: 10
  start-page: 631
  year: 2019
  article-title: Role of Aryl Hydrocarbon Receptor (AhR) in the regulation of immunity and immunopathology during trypanosoma cruzi infection
  publication-title: Front Immunol
– volume: 70
  start-page: 859
  issue: 2
  year: 2002
  end-page: 868
  article-title: Expression of indoleamine 2,3‐dioxygenase, tryptophan degradation, and kynurenine formation during in vivo infection with Toxoplasma gondii: induction by endogenous gamma interferon and requirement of interferon regulatory factor 1
  publication-title: Infect Immun
– volume: 328
  start-page: 1391
  issue: 5984
  year: 2010
  end-page: 1394
  article-title: Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris
  publication-title: Science
– volume: 23
  start-page: 716
  issue: 6
  year: 2018
  end-page: 724
  article-title: Gut microbiota regulation of tryptophan metabolism in health and disease
  publication-title: Cell Host Microbe
– volume: 175
  start-page: 7348
  issue: 11
  year: 2005
  end-page: 7356
  article-title: Effects of aryl hydrocarbon receptor signaling on the modulation of TH1/TH2 balance
  publication-title: J Immunol
– volume: 84
  start-page: 3071
  issue: 10
  year: 2016
  end-page: 3082
  article-title: The aryl hydrocarbon receptor modulates production of cytokines and reactive oxygen species and development of myocarditis during trypanosoma cruzi infection
  publication-title: Infect Immun
– volume: 8
  start-page: 13044
  issue: 1
  year: 2018
  article-title: Microbiota dysbiosis and its pathophysiological significance in bowel obstruction
  publication-title: Sci Rep
– volume: 542
  start-page: 242
  issue: 7640
  year: 2017
  end-page: 245
  article-title: Feedback control of AHR signalling regulates intestinal immunity
  publication-title: Nature
– volume: 55
  start-page: 467
  issue: 6
  year: 2008
  end-page: 475
  article-title: The history of Toxoplasma gondii–the first 100 years
  publication-title: The Journal of eukaryotic microbiology
– ident: e_1_2_9_43_1
  doi: 10.1113/jphysiol.2009.172742
– ident: e_1_2_9_33_1
  doi: 10.3389/fimmu.2014.00551
– ident: e_1_2_9_21_1
  doi: 10.1002/em.20588
– ident: e_1_2_9_64_1
  doi: 10.1038/nm.4102
– ident: e_1_2_9_9_1
  doi: 10.1096/fj.09-150920
– ident: e_1_2_9_16_1
  doi: 10.1093/infdis/jir621
– ident: e_1_2_9_45_1
  doi: 10.1016/S1074-7613(04)00107-4
– ident: e_1_2_9_6_1
  doi: 10.1128/IAI.70.2.779-786.2002
– ident: e_1_2_9_38_1
  doi: 10.1016/j.chom.2018.05.003
– ident: e_1_2_9_25_1
  doi: 10.1136/gutjnl-2014-308820
– ident: e_1_2_9_50_1
  doi: 10.1016/j.gene.2011.06.002
– ident: e_1_2_9_48_1
  doi: 10.1073/pnas.0812874106
– ident: e_1_2_9_28_1
  doi: 10.1016/0003-2697(82)90118-X
– ident: e_1_2_9_55_1
  doi: 10.1124/mol.113.091165
– ident: e_1_2_9_5_1
  doi: 10.1038/nri1457
– ident: e_1_2_9_8_1
  doi: 10.1128/IAI.72.5.2723-2730.2004
– ident: e_1_2_9_27_1
  doi: 10.1084/jem.20070602
– ident: e_1_2_9_42_1
  doi: 10.1126/science.1187703
– ident: e_1_2_9_14_1
  doi: 10.1128/IAI.44.2.211-216.1984
– ident: e_1_2_9_47_1
  doi: 10.3389/fimmu.2019.00631
– ident: e_1_2_9_29_1
  doi: 10.1007/s12035-017-0706-0
– ident: e_1_2_9_31_1
  doi: 10.4049/jimmunol.166.10.6332
– ident: e_1_2_9_57_1
  doi: 10.1016/j.celrep.2017.10.114
– ident: e_1_2_9_60_1
  doi: 10.1155/2010/505694
– ident: e_1_2_9_30_1
  doi: 10.4049/jimmunol.177.12.8785
– ident: e_1_2_9_63_1
  doi: 10.1371/journal.pone.0023522
– ident: e_1_2_9_10_1
  doi: 10.1038/nature06881
– ident: e_1_2_9_23_1
  doi: 10.1038/nature24661
– ident: e_1_2_9_18_1
  doi: 10.1016/j.it.2016.08.007
– ident: e_1_2_9_44_1
  doi: 10.1038/ni.2508
– ident: e_1_2_9_2_1
  doi: 10.1046/j.1440-1711.2003.t01-1-01177.x
– ident: e_1_2_9_12_1
  doi: 10.1111/pim.12164
– ident: e_1_2_9_35_1
  doi: 10.1016/j.immuni.2009.10.001
– ident: e_1_2_9_11_1
  doi: 10.1111/j.1550-7408.2008.00345.x
– ident: e_1_2_9_41_1
  doi: 10.1128/mBio.00935-19
– ident: e_1_2_9_32_1
  doi: 10.1074/jbc.M700669200
– ident: e_1_2_9_19_1
  doi: 10.1136/gut.2006.104497
– ident: e_1_2_9_7_1
  doi: 10.1128/IAI.70.2.859-868.2002
– ident: e_1_2_9_56_1
  doi: 10.4049/jimmunol.175.11.7348
– ident: e_1_2_9_52_1
  doi: 10.1038/nature21080
– ident: e_1_2_9_51_1
  doi: 10.1038/s41385-018-0019-2
– ident: e_1_2_9_46_1
  doi: 10.1152/ajpgi.00413.2017
– ident: e_1_2_9_20_1
  doi: 10.1126/science.1220961
– ident: e_1_2_9_37_1
  doi: 10.1038/s41598-018-31033-0
– ident: e_1_2_9_58_1
  doi: 10.4049/jimmunol.172.7.4100
– ident: e_1_2_9_40_1
  doi: 10.1073/pnas.1000087107
– ident: e_1_2_9_24_1
  doi: 10.1016/j.cell.2004.07.002
– ident: e_1_2_9_53_1
  doi: 10.1016/j.immuni.2018.07.010
– ident: e_1_2_9_15_1
  doi: 10.1128/IAI.62.6.2277-2284.1994
– ident: e_1_2_9_62_1
  doi: 10.1128/IAI.00575-16
– ident: e_1_2_9_65_1
  doi: 10.1016/j.chom.2017.06.007
– ident: e_1_2_9_39_1
  doi: 10.1146/annurev-immunol-030409-101330
– ident: e_1_2_9_4_1
  doi: 10.3389/fcimb.2018.00013
– ident: e_1_2_9_13_1
  doi: 10.1128/CMR.05013-11
– ident: e_1_2_9_36_1
  doi: 10.1097/COH.0000000000000234
– ident: e_1_2_9_49_1
  doi: 10.1038/mp.2012.77
– ident: e_1_2_9_59_1
  doi: 10.1038/sj.cr.7290282
– ident: e_1_2_9_3_1
  doi: 10.1002/jssc.201700184
– ident: e_1_2_9_17_1
  doi: 10.1016/j.cyto.2012.04.022
– ident: e_1_2_9_26_1
  doi: 10.3389/fmicb.2017.02306
– ident: e_1_2_9_61_1
  doi: 10.1371/journal.pone.0128335
– ident: e_1_2_9_54_1
  doi: 10.1038/nature10491
– ident: e_1_2_9_34_1
  doi: 10.1073/pnas.1009201107
– ident: e_1_2_9_22_1
  doi: 10.1016/j.immuni.2013.08.003
SSID ssj0013263
Score 2.3333805
Snippet Introduction The intestinal microbiota plays an important role in modulating host immune responses. Oral Toxoplasma gondii infection can promote intestinal...
The intestinal microbiota plays an important role in modulating host immune responses. Oral Toxoplasma gondii infection can promote intestinal inflammation in...
IntroductionThe intestinal microbiota plays an important role in modulating host immune responses. Oral Toxoplasma gondii infection can promote intestinal...
INTRODUCTIONThe intestinal microbiota plays an important role in modulating host immune responses. Oral Toxoplasma gondii infection can promote intestinal...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e12720
SubjectTerms Antibiotics
Bacteria
Gram-negative bacteria
Immune response
Infections
Inflammation
intestinal inflammation
Intestinal microflora
Intestine
Lymphocytes T
Metabolism
Microbiota
Oral infection
Toxoplasma gondii
Tryptophan
Title Intestinal microbiota regulates tryptophan metabolism following oral infection with Toxoplasma gondii
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpim.12720
https://www.ncbi.nlm.nih.gov/pubmed/32275066
https://www.proquest.com/docview/2432511552
https://search.proquest.com/docview/2388817331
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-UwEB9UcPGyq67rdlclyh68dGmbNE3Z0-IHelAE32FvJV9dCrZ9vL6Hvv9-M037UBZB8NbShJTMTDK_TOY3AD9EKSQTcRzKTGMJszQOFc1YWCZcMS2QdAqzka_us9s_4vwCaXJ-jbkwnh9ideCGltGv12jgUnXPjHxa1T9jjCK69dehhD59g949iyD4Kmoxi8NcUDGwCuEtnlXPl3vRfw7mS3-133AuP73rV7fh4-Bnkt9eMXZgzTa7sOkrTy534cPNEFP_DBYPBZ2hY_O68rxMc0lmvki97ch8tpwi_YBsSG3nTmkeqq4mpVOg9tFtfARz_Ml4qasheLJLJu1TO3WOeS3J37YxVbUHk8uLydlVOBRfCDVNaRRKljtTt6mUXEilE0szFZVcqyTXJuGpf-HcGK2ozVMTKSodXMxSpS3L6RfYaNrGfgWijI0Mc7gwkgqpEAXPS10aFcvSipyxAE5GKRRTT7FRjNDEzVzRz1wAB6N8isHKuiJhFBFSmiYBHK8-O_vAoIdsbLtwbajD-DFWpgxg38t1NYpbzJzDxHkAp734Xh--uLu-6R--vb3pd9hKEJz3N_8OYGM-W9hDWO_M4qhX1X-Yd-ve
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB66W9rm0kf6iJttq5YccnGxLVmWoZfQJmxoNgS6h96MXg6G2l72Qbv_vhrLXhJKINCbjWVsNPNJ89B8A3AkSiGZiONQZhpbmKVxqGjGwjLhimmBpFNYjTz9kV3-FN9OkSbny1AL4_khdgE3REa3XiPAMSB9A-WLqv4cYxpxBA8Zd4qIBRz06kYOwfdRi1kc5oKKnlcIz_HsXr29G_1jYt62WLst5-zZ__3sc3jam5rkxOvGC3hgm3145JtPbvfh8axPq78Ei3FBh3UcXleemmktydL3qbcrsl5uF8hAIBtS27XTm1_Vqial06H2t9v7CJb5k-FcV0MwuEvm7Z924WzzWpLrtjFV9QrmZ6fzr9Ow778QaprSKJQsd2i3qZRcSKUTSzMVlVyrJNcm4am_4dwYrajNUxMpKp3HmKVKW5bT1zBu2sYeAFHGRoY51zCSCtkQBc9LXRoVy9KKnLEAPg1iKBaeZaMYvBM3c0U3cwFMBgEVPdBWRcIoOklpmgTwcffYQQTzHrKx7caNoc7Nj7E5ZQBvvGB3X3HrmbOZOA_guJPf3Z8vrs5n3cXb-w_9AE-m89lFcXF--f0Q9hL01bvzaRMYr5cb-w5GK7N53-ntX3ys8A4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7yoKGXNk2b1mmSqqWHXhxsS5ZlcgpNloQ0YaF76M3o5WCoH-yDNv--GsteEkqg0JuNR8ho5pNmNNI3AJ9FKSQTcRzKTGMJszQOFc1YWCZcMS2QdApvI19-z25_iPMLpMk5He_CeH6I9YYbIqOfrxHgnSkfgLyr6pMYs4ibsM2cG47E-ZROH6QQfBm1mMVhLqgYaIXwGM-66ePF6C8P87HD2q84k5f_9a-78GJwNMmZt4xXsGGbPXjmS0_e78HOzZBUfw0WdwUd0lG8rjwx01KSua9SbxdkOb_vkH9ANqS2S2c1P6tFTUpnQe0vt_IRvORPxlNdDcGtXTJrf7ed88xrSe7axlTVG5hNLmZfL8Oh-kKoaUqjULLcYd2mUnIhlU4szVRUcq2SXJuEp_6Fc2O0ojZPTaSodPFiliptWU73YatpG_sOiDI2MswFhpFUyIUoeF7q0qhYllbkjAXwadRC0XmOjWKMTdzIFf3IBXA46qcYYLYoEkYxRErTJICP688OIJj1kI1tV06GuiA_xtKUAbz1el334mYz5zFxHsCXXn1Pd19Mr276h4N_F_0AO9PzSfHt6vb6PTxPMFDvD6cdwtZyvrJHsLkwq-Peav8ApOHutA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intestinal+microbiota+regulates+tryptophan+metabolism+following+oral+infection+with+Toxoplasma+gondii&rft.jtitle=Parasite+immunology&rft.au=Santos%2C+Liliane+M.&rft.au=Commodaro%2C+Alessandra+G.&rft.au=Vasquez%2C+Alicia+R.+R.&rft.au=Kohlhoff%2C+Markus&rft.date=2020-09-01&rft.issn=0141-9838&rft.eissn=1365-3024&rft.volume=42&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fpim.12720&rft.externalDBID=10.1111%252Fpim.12720&rft.externalDocID=PIM12720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-9838&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-9838&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-9838&client=summon