Hydrogen diffusivity measurement and microstructural characterization of Custom 465 stainless steel
Hydrogen diffusivity in Custom 465® martensitic precipitation hardened stainless steel is determined using electrochemical permeation tests. Hydrogen diffusivity in the solution annealed (SA) condition is approximately 10 times higher than in the aged H900 (480°C, 4h) condition because of hydrogen t...
Saved in:
Published in: | Electrochimica acta Vol. 178; pp. 494 - 503 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-10-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hydrogen diffusivity in Custom 465® martensitic precipitation hardened stainless steel is determined using electrochemical permeation tests. Hydrogen diffusivity in the solution annealed (SA) condition is approximately 10 times higher than in the aged H900 (480°C, 4h) condition because of hydrogen traps such as Ni3Ti nano-precipitates and reverted austenite. The microstructure of the alloy is characterized by TEM, XRD and ESEM/EBSD, both in the aged H900 and in the SA conditions. In the aged condition, η-Ni3Ti nano-precipitates with hexagonal structure and a rod-like shape are observed. In addition, reverted austenite is found at grain boundaries and inter-lath interfaces. In the SA condition, these microstructural features are not evident, which may explain the higher diffusivity measured. The diffusivity is almost unaffected by prior microplastic deformation of H900. |
---|---|
ISSN: | 0013-4686 1873-3859 |
DOI: | 10.1016/j.electacta.2015.08.016 |