Evaluating Trans-Tethys Migration: An Example Using Acrodont Lizard Phylogenetics

A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions from a 1685–1778 base pair region of the mitochondrial genome. Sequences from three protein-coding genes (NDl, ND2, and COI) are combined with sequenc...

Full description

Saved in:
Bibliographic Details
Published in:Systematic biology Vol. 49; no. 2; pp. 233 - 256
Main Authors: Macey, J. Robert, Schulte, James A., Larson, Allan, Ananjeva, Natalia B., Wang, Yuezhao, Pethiyagoda, Rohan, Rastegar-Pouyani, Nasrullah, Papenfuss, Theodore J.
Format: Journal Article
Language:English
Published: Society of Systematic Biologists 01-06-2000
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions from a 1685–1778 base pair region of the mitochondrial genome. Sequences from three protein-coding genes (NDl, ND2, and COI) are combined with sequences from eight intervening tRNA genes for samples of 70 acrodont taxa and two outgroups. Parsimony analysis of nucleotide sequences identifies eight major clades in the Acrodonta. Most agamid lizards are placed into three distinct clades. One clade is composed of all taxa occurring in Australia and New Guinea; Physignathus cocincinus from Southeast Asia is the sister taxon to the Australia–New Guinea clade. A second clade is composed of taxa occurring from Tibet and the Indian Subcontinent east through South and East Asia. A third clade is composed of taxa occurring from Africa east through Arabia and West Asia to Tibet and the Indian Subcontinent. These three clades contain all agamid lizards except Uromastyx, Leiolepis, and Hydrosaurus, which represent three additional clades of the Agamidae. The Chamaeleonidae forms another clade weakly supported as the sister taxon to the Agamidae. All eight clades of the Acrodonta contain members occurring on land masses derived from Gondwanaland. A hypothesis of agamid lizards rafting with Gondwanan plates is examined statistically. This hypothesis suggests that the African/West Asian clade is of African or Indian origin, and the South Asian clade is either of Indian or Southeast Asian origin. The shortest tree suggests a possible African origin for the former and an Indian origin for the latter, but this result is not statistically robust. The Australia–New Guinea clade rafted with the Australia–New Guinea plate and forms the sister group to a Southeast Asian taxon that occurs on plates that broke from northern Australia–New Guinea. Other acrodont taxa are inferred to be associated with the plates of Afro-Arabia and Madagascar (Chamaeleonidae), India (Uromastyx), or southeast Asia (Hydrosaurus and Leiolepis). Introduction of different biotic elements to Asia by way of separate Gondwanan plates may be a major theme of Asian biogeography. Three historical events may be responsible for the sharp faunal barrier between Southeast Asia and Australia–New Guinea, known as Wallace's line: (1) primary vicariance caused by plate separations; (2) secondary contact of Southeast Asian plates with Eurasia, leading to dispersal from Eurasia into Southeast Asia, and (3) dispersal of the Indian fauna (after collision of that subcontinent) to Southeast Asia. Acrodont lizards show the first and third of these biogeographic patterns and anguid lizards exhibit the second pattern. Modern faunal diversity may be influenced primarily by historical events such as tectonic collisions and land bridge connections, which are expected to promote episodic turnover of continental faunas by introducing new faunal elements into an area. Repeated tectonic collisions may be one of the most important phenomena promoting continental biodiversity. Phylogenetics is a powerful method for investigating these processes.
AbstractList Abstract A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions from a 1685–1778 base pair region of the mitochondrial genome. Sequences from three protein-coding genes (NDl, ND2, and COI) are combined with sequences from eight intervening tRNA genes for samples of 70 acrodont taxa and two outgroups. Parsimony analysis of nucleotide sequences identifies eight major clades in the Acrodonta. Most agamid lizards are placed into three distinct clades. One clade is composed of all taxa occurring in Australia and New Guinea; Physignathus cocincinus from Southeast Asia is the sister taxon to the Australia–New Guinea clade. A second clade is composed of taxa occurring from Tibet and the Indian Subcontinent east through South and East Asia. A third clade is composed of taxa occurring from Africa east through Arabia and West Asia to Tibet and the Indian Subcontinent. These three clades contain all agamid lizards except Uromastyx, Leiolepis, and Hydrosaurus, which represent three additional clades of the Agamidae. The Chamaeleonidae forms another clade weakly supported as the sister taxon to the Agamidae. All eight clades of the Acrodonta contain members occurring on land masses derived from Gondwanaland. A hypothesis of agamid lizards rafting with Gondwanan plates is examined statistically. This hypothesis suggests that the African/West Asian clade is of African or Indian origin, and the South Asian clade is either of Indian or Southeast Asian origin. The shortest tree suggests a possible African origin for the former and an Indian origin for the latter, but this result is not statistically robust. The Australia–New Guinea clade rafted with the Australia–New Guinea plate and forms the sister group to a Southeast Asian taxon that occurs on plates that broke from northern Australia–New Guinea. Other acrodont taxa are inferred to be associated with the plates of Afro-Arabia and Madagascar (Chamaeleonidae), India (Uromastyx), or southeast Asia (Hydrosaurus and Leiolepis). Introduction of different biotic elements to Asia by way of separate Gondwanan plates may be a major theme of Asian biogeography. Three historical events may be responsible for the sharp faunal barrier between Southeast Asia and Australia–New Guinea, known as Wallace's line: (1) primary vicariance caused by plate separations; (2) secondary contact of Southeast Asian plates with Eurasia, leading to dispersal from Eurasia into Southeast Asia, and (3) dispersal of the Indian fauna (after collision of that subcontinent) to Southeast Asia. Acrodont lizards show the first and third of these biogeographic patterns and anguid lizards exhibit the second pattern. Modern faunal diversity may be influenced primarily by historical events such as tectonic collisions and land bridge connections, which are expected to promote episodic turnover of continental faunas by introducing new faunal elements into an area. Repeated tectonic collisions may be one of the most important phenomena promoting continental biodiversity. Phylogenetics is a powerful method for investigating these processes.
A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions from a 1685–1778 base pair region of the mitochondrial genome. Sequences from three protein-coding genes (NDl, ND2, and COI) are combined with sequences from eight intervening tRNA genes for samples of 70 acrodont taxa and two outgroups. Parsimony analysis of nucleotide sequences identifies eight major clades in the Acrodonta. Most agamid lizards are placed into three distinct clades. One clade is composed of all taxa occurring in Australia and New Guinea; Physignathus cocincinus from Southeast Asia is the sister taxon to the Australia–New Guinea clade. A second clade is composed of taxa occurring from Tibet and the Indian Subcontinent east through South and East Asia. A third clade is composed of taxa occurring from Africa east through Arabia and West Asia to Tibet and the Indian Subcontinent. These three clades contain all agamid lizards except Uromastyx, Leiolepis, and Hydrosaurus, which represent three additional clades of the Agamidae. The Chamaeleonidae forms another clade weakly supported as the sister taxon to the Agamidae. All eight clades of the Acrodonta contain members occurring on land masses derived from Gondwanaland. A hypothesis of agamid lizards rafting with Gondwanan plates is examined statistically. This hypothesis suggests that the African/West Asian clade is of African or Indian origin, and the South Asian clade is either of Indian or Southeast Asian origin. The shortest tree suggests a possible African origin for the former and an Indian origin for the latter, but this result is not statistically robust. The Australia–New Guinea clade rafted with the Australia–New Guinea plate and forms the sister group to a Southeast Asian taxon that occurs on plates that broke from northern Australia–New Guinea. Other acrodont taxa are inferred to be associated with the plates of Afro-Arabia and Madagascar (Chamaeleonidae), India (Uromastyx), or southeast Asia (Hydrosaurus and Leiolepis). Introduction of different biotic elements to Asia by way of separate Gondwanan plates may be a major theme of Asian biogeography. Three historical events may be responsible for the sharp faunal barrier between Southeast Asia and Australia–New Guinea, known as Wallace's line: (1) primary vicariance caused by plate separations; (2) secondary contact of Southeast Asian plates with Eurasia, leading to dispersal from Eurasia into Southeast Asia, and (3) dispersal of the Indian fauna (after collision of that subcontinent) to Southeast Asia. Acrodont lizards show the first and third of these biogeographic patterns and anguid lizards exhibit the second pattern. Modern faunal diversity may be influenced primarily by historical events such as tectonic collisions and land bridge connections, which are expected to promote episodic turnover of continental faunas by introducing new faunal elements into an area. Repeated tectonic collisions may be one of the most important phenomena promoting continental biodiversity. Phylogenetics is a powerful method for investigating these processes.
Author Wang, Yuezhao
Rastegar-Pouyani, Nasrullah
Ananjeva, Natalia B.
Papenfuss, Theodore J.
Larson, Allan
Schulte, James A.
Macey, J. Robert
Pethiyagoda, Rohan
Author_xml – sequence: 1
  givenname: J. Robert
  surname: Macey
  fullname: Macey, J. Robert
  email: Department of Biology, Box 1137, Washington University St. Louis, Missouri 63130–4899, USA macey@biology.wustl.edu, schulte@biology.wustl.edu, larson@wustlb.wustl.edu, macey@biology.wustl.edu
  organization: Department of Biology, Box 1137, Washington University St. Louis, Missouri 63130–4899, USA E-mail: macey@biology.wustl.edu, schulte@biology.wustl.edu, larson@wustlb.wustl.edu
– sequence: 2
  givenname: James A.
  surname: Schulte
  fullname: Schulte, James A.
  email: Department of Biology, Box 1137, Washington University St. Louis, Missouri 63130–4899, USA macey@biology.wustl.edu, schulte@biology.wustl.edu, larson@wustlb.wustl.edu, macey@biology.wustl.edu
  organization: Department of Biology, Box 1137, Washington University St. Louis, Missouri 63130–4899, USA E-mail: macey@biology.wustl.edu, schulte@biology.wustl.edu, larson@wustlb.wustl.edu
– sequence: 3
  givenname: Allan
  surname: Larson
  fullname: Larson, Allan
  email: Department of Biology, Box 1137, Washington University St. Louis, Missouri 63130–4899, USA macey@biology.wustl.edu, schulte@biology.wustl.edu, larson@wustlb.wustl.edu, macey@biology.wustl.edu
  organization: Department of Biology, Box 1137, Washington University St. Louis, Missouri 63130–4899, USA E-mail: macey@biology.wustl.edu, schulte@biology.wustl.edu, larson@wustlb.wustl.edu
– sequence: 4
  givenname: Natalia B.
  surname: Ananjeva
  fullname: Ananjeva, Natalia B.
  email: Zoological Institute, Russian Academy of Sciences St. Petersburg, Russia agama@NA4755.spb.edu, agama@NA4755.spb.edu
  organization: Zoological Institute, Russian Academy of Sciences St. Petersburg, Russia E-mail: agama@NA4755.spb.edu
– sequence: 5
  givenname: Yuezhao
  surname: Wang
  fullname: Wang, Yuezhao
  organization: Chengdu Institute of Biology Chengdu, Sichuan, China
– sequence: 6
  givenname: Rohan
  surname: Pethiyagoda
  fullname: Pethiyagoda, Rohan
  email: Wildlife Heritage Trust 95 Cotta Rd., Colombo 8, Sri Lanka rohan@wht.org, rohan@wht.org
  organization: Wildlife Heritage Trust 95 Cotta Rd., Colombo 8, Sri Lanka E-mail: rohan@wht.org
– sequence: 7
  givenname: Nasrullah
  surname: Rastegar-Pouyani
  fullname: Rastegar-Pouyani, Nasrullah
  organization: University of Göteborg Göteborg, Sweden
– sequence: 8
  givenname: Theodore J.
  surname: Papenfuss
  fullname: Papenfuss, Theodore J.
  email: Museum of Vertebrate Zoology, University of California Berkeley, CA 94720, USA asiaherp@uclink4.berkeley.edu, asiaherp@uclink4.berkeley.edu
  organization: Museum of Vertebrate Zoology, University of California Berkeley, CA 94720, USA E-mail: asiaherp@uclink4.berkeley.edu
BookMark eNqNkE1PwkAURScGEwFdu-3apHS-27ojiKLWCAkY4mYybadQLTNkphjqr7ekxrWrd_Ny7svLGYCeNloBcI3gCMGYBK5xaWkCGo_wCBNyBvoIhtyPCF_3TpkTnyEWXoCBcx8QIsQZ6oPF9EtWB1mXeuMtrdTOX6p62zjvpdzYdm30rTfW3vQod_tKeSt3AseZNbnRtZeU39Lm3nzbVGajtKrLzF2C80JWTl39ziFY3U-Xk5mfvD48TsaJnxGGaj9TKWERjXleFEhCxPKMMSUxZGkkqUohJRCnGS1ShCMOUYYVhyEMQ5KrXGJJhiDo7rbPOGdVIfa23EnbCATFyYjojAgaCyxaI23jpmuYw_4fsN_BpavV8Q-X9lPwkIRMzNbv4u756W1Bk7mg5AfVYHXj
CitedBy_id crossref_primary_10_1038_s41598_018_38133_x
crossref_primary_10_1670_16_007
crossref_primary_10_1098_rstb_2004_1530
crossref_primary_10_1002_ece3_7186
crossref_primary_10_1134_S2079086419020026
crossref_primary_10_3897_evolsyst_5_75305
crossref_primary_10_7868_S0042132418050058
crossref_primary_10_1111_j_1095_8312_2005_00546_x
crossref_primary_10_1554_0014_3820_2002_056_1931_ETOOID_2_0_CO_2
crossref_primary_10_1098_rspb_2002_2272
crossref_primary_10_3099_0027_4100_163_5_151
crossref_primary_10_3897_zookeys_657_11600
crossref_primary_10_1046_j_1420_9101_2003_00573_x
crossref_primary_10_1111_j_1469_7998_2012_00962_x
crossref_primary_10_1038_s41598_020_80955_1
crossref_primary_10_1016_j_ympev_2005_08_020
crossref_primary_10_1016_j_ympev_2011_07_008
crossref_primary_10_1655_Herpetologica_D_19_00033
crossref_primary_10_1002_ece3_269
crossref_primary_10_1016_j_cretres_2021_104813
crossref_primary_10_1002_gj_3379
crossref_primary_10_1111_j_1095_8312_2004_00324_x
crossref_primary_10_1016_j_gene_2004_11_014
crossref_primary_10_1111_j_1420_9101_2005_01050_x
crossref_primary_10_1007_s00114_016_1419_3
crossref_primary_10_1016_j_gsf_2016_05_001
crossref_primary_10_1016_j_ympev_2010_04_032
crossref_primary_10_1111_j_1463_6409_2011_00495_x
crossref_primary_10_1655_Herpetologica_D_17_00018_1
crossref_primary_10_1554_02_369
crossref_primary_10_1093_zoolinnean_zly034
crossref_primary_10_1111_j_1095_8312_2001_tb01312_x
crossref_primary_10_1016_S1055_7903_03_00211_2
crossref_primary_10_7717_peerj_4543
crossref_primary_10_1046_j_1095_8312_2002_00100_x
crossref_primary_10_1080_10635150590905894
crossref_primary_10_1111_j_1095_8312_2003_00259_x
crossref_primary_10_1242_jeb_01345
crossref_primary_10_1098_rstb_2011_0215
crossref_primary_10_1016_j_ympev_2010_12_007
crossref_primary_10_2113_gssgfbull_180_4_369
crossref_primary_10_1016_j_palwor_2021_01_001
crossref_primary_10_7717_peerj_8295
crossref_primary_10_1016_j_ympev_2003_09_011
crossref_primary_10_1134_S1022795411070155
crossref_primary_10_1007_s00114_010_0648_0
crossref_primary_10_1016_j_geobios_2015_09_001
crossref_primary_10_1016_j_ympev_2014_06_013
crossref_primary_10_1016_j_ympev_2024_108090
crossref_primary_10_3897_zse_95_32818
crossref_primary_10_1016_S1055_7903_02_00218_X
crossref_primary_10_1111_zsc_12036
crossref_primary_10_1016_j_ympev_2008_10_018
crossref_primary_10_1007_s12038_009_0057_8
crossref_primary_10_1111_jipb_12065
crossref_primary_10_1111_j_1420_9101_2010_01971_x
crossref_primary_10_1554_04_575_1
crossref_primary_10_1016_j_ympev_2006_05_028
crossref_primary_10_1016_j_ympev_2005_05_007
crossref_primary_10_1016_j_ijbiomac_2018_12_068
crossref_primary_10_1093_zoolinnean_zlx112
crossref_primary_10_1016_j_ympev_2017_11_016
crossref_primary_10_1098_rsbl_2006_0473
crossref_primary_10_1098_rspb_2005_3328
crossref_primary_10_1016_j_ympev_2013_11_012
crossref_primary_10_1006_mpev_2001_1076
crossref_primary_10_1080_10635150490423430
crossref_primary_10_3390_ani14060826
crossref_primary_10_1007_s10528_020_10025_8
crossref_primary_10_1111_j_1365_294X_2011_05036_x
crossref_primary_10_1038_s41598_020_78183_8
crossref_primary_10_1111_j_1365_2699_2010_02293_x
crossref_primary_10_1016_j_palaeo_2012_10_028
crossref_primary_10_1134_S0013873816020093
crossref_primary_10_3897_vz_73_e101329
crossref_primary_10_1046_j_1463_6409_2000_00035_x
crossref_primary_10_1111_j_1420_9101_2010_02197_x
crossref_primary_10_1111_j_1095_8312_2002_tb01721_x
crossref_primary_10_1111_j_1095_8312_2007_00866_x
crossref_primary_10_1134_S106235900802012X
crossref_primary_10_1016_j_anthro_2015_10_010
crossref_primary_10_1186_s12862_016_0611_6
crossref_primary_10_1371_journal_pone_0031314
crossref_primary_10_1080_10635150500234625
crossref_primary_10_1098_rsbl_2021_0212
crossref_primary_10_1038_ncomms9149
crossref_primary_10_1080_00222933_2013_802041
crossref_primary_10_1098_rspb_2013_0665
crossref_primary_10_3897_vz_73_e90979
crossref_primary_10_1098_rsbl_2011_1216
crossref_primary_10_1098_rsbl_2012_0648
crossref_primary_10_1111_j_1095_8312_2009_01246_x
crossref_primary_10_1016_j_ympev_2010_11_025
crossref_primary_10_1046_j_0962_1083_2001_01393_x
crossref_primary_10_1098_rsos_160462
crossref_primary_10_1134_S1062359022040033
crossref_primary_10_1371_journal_pone_0080563
crossref_primary_10_3897_BDJ_8_e48587
crossref_primary_10_1086_597613
crossref_primary_10_1111_jbi_12578
crossref_primary_10_3390_jdb9030032
crossref_primary_10_1111_j_1096_3642_2011_00726_x
crossref_primary_10_1016_j_ympev_2013_03_022
crossref_primary_10_1017_S0024282919000392
crossref_primary_10_1080_08912963_2022_2103693
crossref_primary_10_1007_s10530_008_9259_5
crossref_primary_10_1111_j_1096_3642_2009_00553_x
crossref_primary_10_1655_02_25
crossref_primary_10_1016_j_ympev_2012_08_018
crossref_primary_10_1554_05_024_1
crossref_primary_10_1017_S1464793103006134
crossref_primary_10_1080_10635150701491156
crossref_primary_10_1126_science_1058875
crossref_primary_10_3897_zse_92_7469
crossref_primary_10_1002_jmor_20330
crossref_primary_10_1002_ar_10096
crossref_primary_10_1098_rspb_2000_1417
crossref_primary_10_1111_j_1095_8312_2007_00911_x
crossref_primary_10_1111_j_1365_2699_2005_01355_x
crossref_primary_10_1080_08912960903302128
crossref_primary_10_1016_j_gene_2014_02_021
crossref_primary_10_1098_rspb_2004_2806
crossref_primary_10_1002_mmnz_200600021
crossref_primary_10_1007_s10531_022_02499_2
crossref_primary_10_1098_rspb_2004_2802
crossref_primary_10_52547_JAD_2020_2_4_2
crossref_primary_10_1111_zsc_12266
crossref_primary_10_1073_pnas_0501104102
crossref_primary_10_1080_02724634_2023_2184696
crossref_primary_10_1080_10635150500234641
crossref_primary_10_1111_bij_12878
crossref_primary_10_1006_mpev_2000_0905
crossref_primary_10_1111_j_1365_294X_2005_02550_x
crossref_primary_10_1080_10635150490522340
crossref_primary_10_1111_j_1095_8312_2012_01988_x
crossref_primary_10_7717_peerj_17277
crossref_primary_10_1038_srep34014
crossref_primary_10_1006_mpev_2001_1041
crossref_primary_10_1016_j_jhevol_2010_03_015
crossref_primary_10_1006_mpev_2000_0908
crossref_primary_10_3724_SP_J_1245_2011_00117
crossref_primary_10_1016_j_ympev_2008_03_022
crossref_primary_10_1093_molbev_msr181
crossref_primary_10_18563_pv_44_1_e1
crossref_primary_10_1080_14772000_2017_1282553
crossref_primary_10_1007_s12686_012_9645_2
crossref_primary_10_1111_j_1558_5646_2010_01211_x
crossref_primary_10_1111_j_1095_8312_2005_00485_x
crossref_primary_10_1098_rspb_2002_2050
crossref_primary_10_1093_zoolinnean_zlab107
crossref_primary_10_1080_19401730802449162
crossref_primary_10_1554_04_208
crossref_primary_10_1655_HERPETOLOGICA_D_13_00087
crossref_primary_10_1111_j_1365_294X_2007_03611_x
crossref_primary_10_1655_02_48
crossref_primary_10_1111_j_1439_0469_2012_00662_x
crossref_primary_10_1080_10635150500234534
crossref_primary_10_1002_jez_1133
crossref_primary_10_1186_1471_2148_9_131
crossref_primary_10_1046_j_1365_2699_2003_00895_x
crossref_primary_10_1134_S0012496614020148
crossref_primary_10_1016_j_crpv_2015_05_008
crossref_primary_10_1002_tax_12794
crossref_primary_10_1080_03115518_2012_688688
crossref_primary_10_1554_02_227
crossref_primary_10_1080_08912963_2018_1425408
crossref_primary_10_1671_0272_4634_2002_022_0299_FLFTJK_2_0_CO_2
ContentType Journal Article
Copyright 2000 Society of Systematic Biologists 2000
Copyright_xml – notice: 2000 Society of Systematic Biologists 2000
DBID BSCLL
AAYXX
CITATION
DOI 10.1093/sysbio/49.2.233
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
Ecology
EISSN 1076-836X
EndPage 256
ExternalDocumentID 10_1093_sysbio_49_2_233
10.1093/sysbio/49.2.233
ark_67375_HXZ_DKJVQ4LP_4
GroupedDBID ---
-~X
.-4
.2P
.I3
0R~
123
18M
1TH
29Q
2FS
36B
3V.
4.4
48X
53G
5VS
5WD
6.Y
70D
7X7
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8G5
AAHBH
AAHKG
AAIMJ
AAISJ
AAJKP
AAJQQ
AAKGQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
ABBHK
ABDBF
ABEJV
ABEUO
ABIXL
ABJNI
ABMNT
ABNKS
ABPLY
ABPPZ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABTLG
ABUWG
ABWST
ABXSQ
ABXVV
ABZBJ
ACCCW
ACFRR
ACGEJ
ACGFO
ACGFS
ACGOD
ACIPB
ACMRT
ACNCT
ACPQN
ACPRK
ACSTJ
ACUFI
ACUTJ
ACZBC
ADACV
ADBBV
ADEYI
ADFTL
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRIX
ADRTK
ADULT
ADVEK
ADXPE
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFAZZ
AFFZL
AFGWE
AFIYH
AFKRA
AFKVX
AFOFC
AFSHK
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUYK
AHMBA
AHXOZ
AHXPO
AIAGR
AIJHB
AILXY
AJEEA
AJWEG
AKHUL
AKWXX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQVQM
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZQEC
BAYMD
BBNVY
BCRHZ
BENPR
BES
BEYMZ
BHONS
BHPHI
BKSAR
BPHCQ
BQDIO
BSCLL
BSWAC
BVXVI
C45
CAG
CBGCD
CCPQU
CDBKE
COF
CS3
CUYZI
CXTWN
CZ4
D1J
DAKXR
DEVKO
DFGAJ
DILTD
DOOOF
DU5
DWQXO
D~K
EAD
EAP
EAS
EBC
EBD
EBS
EE~
EHN
EJD
ELUNK
EMB
EMK
EMOBN
EPL
EPT
EST
ESX
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
FYUFA
GAUVT
GJXCC
GNUQQ
GTFYD
GUQSH
H13
H5~
HAR
HCIFZ
HF~
HGD
HMCUK
HQ2
HTVGU
HVGLF
HW0
HZ~
I-F
IOX
IPSME
J21
JAAYA
JBMMH
JBS
JEB
JEFFH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
LK8
M-Z
M0L
M1P
M2O
M2P
M2Q
M49
M7P
MBTAY
MVM
N9A
NEJ
NGC
NLBLG
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OVD
OWPYF
O~Y
P2P
PADUT
PAFKI
PB-
PCBAR
PEELM
PQQKQ
PROAC
PSQYO
Q1.
Q5Y
QBD
Q~Q
RD5
ROX
ROZ
RUSNO
RW1
RWL
RXO
RXW
S0X
SA0
SV3
TAE
TCN
TEORI
TLC
TN5
TUS
UBC
UKHRP
VQA
WH7
WHG
X7H
XOL
XSW
YAYTL
YKOAZ
YXANX
YXE
ZCG
ZY4
~02
~91
AASNB
AAYXX
CITATION
ID FETCH-LOGICAL-c351t-ceb358496dff1a015dc55ea205b8a4eb04302bc4fb128601c2e6070773deda2a3
ISSN 1063-5157
IngestDate Thu Nov 21 21:50:39 EST 2024
Wed Sep 11 04:47:46 EDT 2024
Wed Oct 30 09:36:20 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Sauria
Agamidae
Iguania
mitochondrial DNA
phylogenetics
Reptilia
Acrodonta
Chamaeleonidae
plate tectonics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-ceb358496dff1a015dc55ea205b8a4eb04302bc4fb128601c2e6070773deda2a3
Notes ark:/67375/HXZ-DKJVQ4LP-4
istex:190A097465D351AF4646BE1777B1A978547C9611
OpenAccessLink https://academic.oup.com/sysbio/article-pdf/49/2/233/19502413/49-2-233.pdf
PageCount 24
ParticipantIDs crossref_primary_10_1093_sysbio_49_2_233
oup_primary_10_1093_sysbio_49_2_233
istex_primary_ark_67375_HXZ_DKJVQ4LP_4
PublicationCentury 2000
PublicationDate 2000-06
20000601
2000-6-00
PublicationDateYYYYMMDD 2000-06-01
PublicationDate_xml – month: 06
  year: 2000
  text: 2000-06
PublicationDecade 2000
PublicationTitle Systematic biology
PublicationYear 2000
Publisher Society of Systematic Biologists
Publisher_xml – name: Society of Systematic Biologists
SSID ssj0011651
Score 2.1799865
Snippet A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions from a...
Abstract A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions...
SourceID crossref
oup
istex
SourceType Aggregation Database
Publisher
StartPage 233
SubjectTerms Acrodonta
Agamidae
Chamaeleonidae
Iguania
mitochondrial DNA
phylogenetics
plate tectonics
Reptilia
Sauria
Title Evaluating Trans-Tethys Migration: An Example Using Acrodont Lizard Phylogenetics
URI https://api.istex.fr/ark:/67375/HXZ-DKJVQ4LP-4/fulltext.pdf
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ra9swEBdpw2Bfxp4seyHYGANjN5b83Dd39Qjdg5ZmIfSLkWyp3Vqckcdo99fvZMmyw2DrPuyLEUJWkrtfznfy3e8QeiUllWEMkWqUpMQNUmUHfZ64YUpkPK6okKGqRp6cxJ_nyUEe5INB23ewm_uvmoY50LWqnP0HbdtNYQLGoHO4gtbheiO954a-uz7TxOXuVChdOJ--ni1tJkdWO_kVU8TAjs4ZyBTz66JeQ4z-Ux0sHJ1DIA-foUocV30H9qRjfjb8Tb0zbX38feiZfO3uJc_55lK34WuScp3Ms3lAbGlKvjLAowVqVrP6m_jBtP1XJI3M2fe2TijGXSaVPqE06aeqCKf7jrrVJkC5dyYJ4Sl1wcHST2Bh5uLITWjT7tCabM1yaqBJ-vZXs2qYRznRnOW_PSUMg9b1CgSlej-lHvHsnVvk239YvYOGBIwb2NZhtj-fzey7Kz9qmn7aH9MSSqV0T2-y126x5QsN1d_6StdZ9lyc6V10x8QmONOguocGor6PbmkRXsMoL9vR6aIZPUDHHdxwH27Ywu0tzmpswIYbsOEWbFiDDW-B7SH68j6fvpu4pkuHW9LQX7ul4BS82DSqpPQZeJdVGYaCkXHIExYIrkjlCC8DycEVgvC_JCJSHFMxrUTFCKOP0G69qMVjhME4VODxcnCp4S5ecj5mKZWUSBH7ZRWP0JtWXsV3TcZS6CQKWmjRFkFakAJEO0KvG3nadWx5oXIY47CYzE-Lgw-Hs-Pg41ERjNBLEPjftntyo1VP0e0O_8_Q7nq5Ec_RzqravDAg-QWpB5ft
link.rule.ids 315,782,786,27933,27934
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+Trans-Tethys+Migration%3A+An+Example+Using+Acrodont+Lizard+Phylogenetics&rft.jtitle=Systematic+biology&rft.au=Macey%2C+J.+Robert&rft.au=Schulte%2C+James+A.&rft.au=Larson%2C+Allan&rft.au=Ananjeva%2C+Natalia+B.&rft.date=2000-06-01&rft.pub=Society+of+Systematic+Biologists&rft.issn=1063-5157&rft.eissn=1076-836X&rft.volume=49&rft.issue=2&rft.spage=233&rft.epage=256&rft_id=info:doi/10.1093%2Fsysbio%2F49.2.233&rft.externalDocID=10.1093%2Fsysbio%2F49.2.233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5157&client=summon