Evaluating Trans-Tethys Migration: An Example Using Acrodont Lizard Phylogenetics
A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions from a 1685–1778 base pair region of the mitochondrial genome. Sequences from three protein-coding genes (NDl, ND2, and COI) are combined with sequenc...
Saved in:
Published in: | Systematic biology Vol. 49; no. 2; pp. 233 - 256 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Society of Systematic Biologists
01-06-2000
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions from a 1685–1778 base pair region of the mitochondrial genome. Sequences from three protein-coding genes (NDl, ND2, and COI) are combined with sequences from eight intervening tRNA genes for samples of 70 acrodont taxa and two outgroups. Parsimony analysis of nucleotide sequences identifies eight major clades in the Acrodonta. Most agamid lizards are placed into three distinct clades. One clade is composed of all taxa occurring in Australia and New Guinea; Physignathus cocincinus from Southeast Asia is the sister taxon to the Australia–New Guinea clade. A second clade is composed of taxa occurring from Tibet and the Indian Subcontinent east through South and East Asia. A third clade is composed of taxa occurring from Africa east through Arabia and West Asia to Tibet and the Indian Subcontinent. These three clades contain all agamid lizards except Uromastyx, Leiolepis, and Hydrosaurus, which represent three additional clades of the Agamidae. The Chamaeleonidae forms another clade weakly supported as the sister taxon to the Agamidae. All eight clades of the Acrodonta contain members occurring on land masses derived from Gondwanaland. A hypothesis of agamid lizards rafting with Gondwanan plates is examined statistically. This hypothesis suggests that the African/West Asian clade is of African or Indian origin, and the South Asian clade is either of Indian or Southeast Asian origin. The shortest tree suggests a possible African origin for the former and an Indian origin for the latter, but this result is not statistically robust. The Australia–New Guinea clade rafted with the Australia–New Guinea plate and forms the sister group to a Southeast Asian taxon that occurs on plates that broke from northern Australia–New Guinea. Other acrodont taxa are inferred to be associated with the plates of Afro-Arabia and Madagascar (Chamaeleonidae), India (Uromastyx), or southeast Asia (Hydrosaurus and Leiolepis). Introduction of different biotic elements to Asia by way of separate Gondwanan plates may be a major theme of Asian biogeography. Three historical events may be responsible for the sharp faunal barrier between Southeast Asia and Australia–New Guinea, known as Wallace's line: (1) primary vicariance caused by plate separations; (2) secondary contact of Southeast Asian plates with Eurasia, leading to dispersal from Eurasia into Southeast Asia, and (3) dispersal of the Indian fauna (after collision of that subcontinent) to Southeast Asia. Acrodont lizards show the first and third of these biogeographic patterns and anguid lizards exhibit the second pattern. Modern faunal diversity may be influenced primarily by historical events such as tectonic collisions and land bridge connections, which are expected to promote episodic turnover of continental faunas by introducing new faunal elements into an area. Repeated tectonic collisions may be one of the most important phenomena promoting continental biodiversity. Phylogenetics is a powerful method for investigating these processes. |
---|---|
AbstractList | Abstract
A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions from a 1685–1778 base pair region of the mitochondrial genome. Sequences from three protein-coding genes (NDl, ND2, and COI) are combined with sequences from eight intervening tRNA genes for samples of 70 acrodont taxa and two outgroups. Parsimony analysis of nucleotide sequences identifies eight major clades in the Acrodonta. Most agamid lizards are placed into three distinct clades. One clade is composed of all taxa occurring in Australia and New Guinea; Physignathus cocincinus from Southeast Asia is the sister taxon to the Australia–New Guinea clade. A second clade is composed of taxa occurring from Tibet and the Indian Subcontinent east through South and East Asia. A third clade is composed of taxa occurring from Africa east through Arabia and West Asia to Tibet and the Indian Subcontinent. These three clades contain all agamid lizards except Uromastyx, Leiolepis, and Hydrosaurus, which represent three additional clades of the Agamidae. The Chamaeleonidae forms another clade weakly supported as the sister taxon to the Agamidae. All eight clades of the Acrodonta contain members occurring on land masses derived from Gondwanaland. A hypothesis of agamid lizards rafting with Gondwanan plates is examined statistically. This hypothesis suggests that the African/West Asian clade is of African or Indian origin, and the South Asian clade is either of Indian or Southeast Asian origin. The shortest tree suggests a possible African origin for the former and an Indian origin for the latter, but this result is not statistically robust. The Australia–New Guinea clade rafted with the Australia–New Guinea plate and forms the sister group to a Southeast Asian taxon that occurs on plates that broke from northern Australia–New Guinea. Other acrodont taxa are inferred to be associated with the plates of Afro-Arabia and Madagascar (Chamaeleonidae), India (Uromastyx), or southeast Asia (Hydrosaurus and Leiolepis). Introduction of different biotic elements to Asia by way of separate Gondwanan plates may be a major theme of Asian biogeography. Three historical events may be responsible for the sharp faunal barrier between Southeast Asia and Australia–New Guinea, known as Wallace's line: (1) primary vicariance caused by plate separations; (2) secondary contact of Southeast Asian plates with Eurasia, leading to dispersal from Eurasia into Southeast Asia, and (3) dispersal of the Indian fauna (after collision of that subcontinent) to Southeast Asia. Acrodont lizards show the first and third of these biogeographic patterns and anguid lizards exhibit the second pattern. Modern faunal diversity may be influenced primarily by historical events such as tectonic collisions and land bridge connections, which are expected to promote episodic turnover of continental faunas by introducing new faunal elements into an area. Repeated tectonic collisions may be one of the most important phenomena promoting continental biodiversity. Phylogenetics is a powerful method for investigating these processes. A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions from a 1685–1778 base pair region of the mitochondrial genome. Sequences from three protein-coding genes (NDl, ND2, and COI) are combined with sequences from eight intervening tRNA genes for samples of 70 acrodont taxa and two outgroups. Parsimony analysis of nucleotide sequences identifies eight major clades in the Acrodonta. Most agamid lizards are placed into three distinct clades. One clade is composed of all taxa occurring in Australia and New Guinea; Physignathus cocincinus from Southeast Asia is the sister taxon to the Australia–New Guinea clade. A second clade is composed of taxa occurring from Tibet and the Indian Subcontinent east through South and East Asia. A third clade is composed of taxa occurring from Africa east through Arabia and West Asia to Tibet and the Indian Subcontinent. These three clades contain all agamid lizards except Uromastyx, Leiolepis, and Hydrosaurus, which represent three additional clades of the Agamidae. The Chamaeleonidae forms another clade weakly supported as the sister taxon to the Agamidae. All eight clades of the Acrodonta contain members occurring on land masses derived from Gondwanaland. A hypothesis of agamid lizards rafting with Gondwanan plates is examined statistically. This hypothesis suggests that the African/West Asian clade is of African or Indian origin, and the South Asian clade is either of Indian or Southeast Asian origin. The shortest tree suggests a possible African origin for the former and an Indian origin for the latter, but this result is not statistically robust. The Australia–New Guinea clade rafted with the Australia–New Guinea plate and forms the sister group to a Southeast Asian taxon that occurs on plates that broke from northern Australia–New Guinea. Other acrodont taxa are inferred to be associated with the plates of Afro-Arabia and Madagascar (Chamaeleonidae), India (Uromastyx), or southeast Asia (Hydrosaurus and Leiolepis). Introduction of different biotic elements to Asia by way of separate Gondwanan plates may be a major theme of Asian biogeography. Three historical events may be responsible for the sharp faunal barrier between Southeast Asia and Australia–New Guinea, known as Wallace's line: (1) primary vicariance caused by plate separations; (2) secondary contact of Southeast Asian plates with Eurasia, leading to dispersal from Eurasia into Southeast Asia, and (3) dispersal of the Indian fauna (after collision of that subcontinent) to Southeast Asia. Acrodont lizards show the first and third of these biogeographic patterns and anguid lizards exhibit the second pattern. Modern faunal diversity may be influenced primarily by historical events such as tectonic collisions and land bridge connections, which are expected to promote episodic turnover of continental faunas by introducing new faunal elements into an area. Repeated tectonic collisions may be one of the most important phenomena promoting continental biodiversity. Phylogenetics is a powerful method for investigating these processes. |
Author | Wang, Yuezhao Rastegar-Pouyani, Nasrullah Ananjeva, Natalia B. Papenfuss, Theodore J. Larson, Allan Schulte, James A. Macey, J. Robert Pethiyagoda, Rohan |
Author_xml | – sequence: 1 givenname: J. Robert surname: Macey fullname: Macey, J. Robert email: Department of Biology, Box 1137, Washington University St. Louis, Missouri 63130–4899, USA macey@biology.wustl.edu, schulte@biology.wustl.edu, larson@wustlb.wustl.edu, macey@biology.wustl.edu organization: Department of Biology, Box 1137, Washington University St. Louis, Missouri 63130–4899, USA E-mail: macey@biology.wustl.edu, schulte@biology.wustl.edu, larson@wustlb.wustl.edu – sequence: 2 givenname: James A. surname: Schulte fullname: Schulte, James A. email: Department of Biology, Box 1137, Washington University St. Louis, Missouri 63130–4899, USA macey@biology.wustl.edu, schulte@biology.wustl.edu, larson@wustlb.wustl.edu, macey@biology.wustl.edu organization: Department of Biology, Box 1137, Washington University St. Louis, Missouri 63130–4899, USA E-mail: macey@biology.wustl.edu, schulte@biology.wustl.edu, larson@wustlb.wustl.edu – sequence: 3 givenname: Allan surname: Larson fullname: Larson, Allan email: Department of Biology, Box 1137, Washington University St. Louis, Missouri 63130–4899, USA macey@biology.wustl.edu, schulte@biology.wustl.edu, larson@wustlb.wustl.edu, macey@biology.wustl.edu organization: Department of Biology, Box 1137, Washington University St. Louis, Missouri 63130–4899, USA E-mail: macey@biology.wustl.edu, schulte@biology.wustl.edu, larson@wustlb.wustl.edu – sequence: 4 givenname: Natalia B. surname: Ananjeva fullname: Ananjeva, Natalia B. email: Zoological Institute, Russian Academy of Sciences St. Petersburg, Russia agama@NA4755.spb.edu, agama@NA4755.spb.edu organization: Zoological Institute, Russian Academy of Sciences St. Petersburg, Russia E-mail: agama@NA4755.spb.edu – sequence: 5 givenname: Yuezhao surname: Wang fullname: Wang, Yuezhao organization: Chengdu Institute of Biology Chengdu, Sichuan, China – sequence: 6 givenname: Rohan surname: Pethiyagoda fullname: Pethiyagoda, Rohan email: Wildlife Heritage Trust 95 Cotta Rd., Colombo 8, Sri Lanka rohan@wht.org, rohan@wht.org organization: Wildlife Heritage Trust 95 Cotta Rd., Colombo 8, Sri Lanka E-mail: rohan@wht.org – sequence: 7 givenname: Nasrullah surname: Rastegar-Pouyani fullname: Rastegar-Pouyani, Nasrullah organization: University of Göteborg Göteborg, Sweden – sequence: 8 givenname: Theodore J. surname: Papenfuss fullname: Papenfuss, Theodore J. email: Museum of Vertebrate Zoology, University of California Berkeley, CA 94720, USA asiaherp@uclink4.berkeley.edu, asiaherp@uclink4.berkeley.edu organization: Museum of Vertebrate Zoology, University of California Berkeley, CA 94720, USA E-mail: asiaherp@uclink4.berkeley.edu |
BookMark | eNqNkE1PwkAURScGEwFdu-3apHS-27ojiKLWCAkY4mYybadQLTNkphjqr7ekxrWrd_Ny7svLGYCeNloBcI3gCMGYBK5xaWkCGo_wCBNyBvoIhtyPCF_3TpkTnyEWXoCBcx8QIsQZ6oPF9EtWB1mXeuMtrdTOX6p62zjvpdzYdm30rTfW3vQod_tKeSt3AseZNbnRtZeU39Lm3nzbVGajtKrLzF2C80JWTl39ziFY3U-Xk5mfvD48TsaJnxGGaj9TKWERjXleFEhCxPKMMSUxZGkkqUohJRCnGS1ShCMOUYYVhyEMQ5KrXGJJhiDo7rbPOGdVIfa23EnbCATFyYjojAgaCyxaI23jpmuYw_4fsN_BpavV8Q-X9lPwkIRMzNbv4u756W1Bk7mg5AfVYHXj |
CitedBy_id | crossref_primary_10_1038_s41598_018_38133_x crossref_primary_10_1670_16_007 crossref_primary_10_1098_rstb_2004_1530 crossref_primary_10_1002_ece3_7186 crossref_primary_10_1134_S2079086419020026 crossref_primary_10_3897_evolsyst_5_75305 crossref_primary_10_7868_S0042132418050058 crossref_primary_10_1111_j_1095_8312_2005_00546_x crossref_primary_10_1554_0014_3820_2002_056_1931_ETOOID_2_0_CO_2 crossref_primary_10_1098_rspb_2002_2272 crossref_primary_10_3099_0027_4100_163_5_151 crossref_primary_10_3897_zookeys_657_11600 crossref_primary_10_1046_j_1420_9101_2003_00573_x crossref_primary_10_1111_j_1469_7998_2012_00962_x crossref_primary_10_1038_s41598_020_80955_1 crossref_primary_10_1016_j_ympev_2005_08_020 crossref_primary_10_1016_j_ympev_2011_07_008 crossref_primary_10_1655_Herpetologica_D_19_00033 crossref_primary_10_1002_ece3_269 crossref_primary_10_1016_j_cretres_2021_104813 crossref_primary_10_1002_gj_3379 crossref_primary_10_1111_j_1095_8312_2004_00324_x crossref_primary_10_1016_j_gene_2004_11_014 crossref_primary_10_1111_j_1420_9101_2005_01050_x crossref_primary_10_1007_s00114_016_1419_3 crossref_primary_10_1016_j_gsf_2016_05_001 crossref_primary_10_1016_j_ympev_2010_04_032 crossref_primary_10_1111_j_1463_6409_2011_00495_x crossref_primary_10_1655_Herpetologica_D_17_00018_1 crossref_primary_10_1554_02_369 crossref_primary_10_1093_zoolinnean_zly034 crossref_primary_10_1111_j_1095_8312_2001_tb01312_x crossref_primary_10_1016_S1055_7903_03_00211_2 crossref_primary_10_7717_peerj_4543 crossref_primary_10_1046_j_1095_8312_2002_00100_x crossref_primary_10_1080_10635150590905894 crossref_primary_10_1111_j_1095_8312_2003_00259_x crossref_primary_10_1242_jeb_01345 crossref_primary_10_1098_rstb_2011_0215 crossref_primary_10_1016_j_ympev_2010_12_007 crossref_primary_10_2113_gssgfbull_180_4_369 crossref_primary_10_1016_j_palwor_2021_01_001 crossref_primary_10_7717_peerj_8295 crossref_primary_10_1016_j_ympev_2003_09_011 crossref_primary_10_1134_S1022795411070155 crossref_primary_10_1007_s00114_010_0648_0 crossref_primary_10_1016_j_geobios_2015_09_001 crossref_primary_10_1016_j_ympev_2014_06_013 crossref_primary_10_1016_j_ympev_2024_108090 crossref_primary_10_3897_zse_95_32818 crossref_primary_10_1016_S1055_7903_02_00218_X crossref_primary_10_1111_zsc_12036 crossref_primary_10_1016_j_ympev_2008_10_018 crossref_primary_10_1007_s12038_009_0057_8 crossref_primary_10_1111_jipb_12065 crossref_primary_10_1111_j_1420_9101_2010_01971_x crossref_primary_10_1554_04_575_1 crossref_primary_10_1016_j_ympev_2006_05_028 crossref_primary_10_1016_j_ympev_2005_05_007 crossref_primary_10_1016_j_ijbiomac_2018_12_068 crossref_primary_10_1093_zoolinnean_zlx112 crossref_primary_10_1016_j_ympev_2017_11_016 crossref_primary_10_1098_rsbl_2006_0473 crossref_primary_10_1098_rspb_2005_3328 crossref_primary_10_1016_j_ympev_2013_11_012 crossref_primary_10_1006_mpev_2001_1076 crossref_primary_10_1080_10635150490423430 crossref_primary_10_3390_ani14060826 crossref_primary_10_1007_s10528_020_10025_8 crossref_primary_10_1111_j_1365_294X_2011_05036_x crossref_primary_10_1038_s41598_020_78183_8 crossref_primary_10_1111_j_1365_2699_2010_02293_x crossref_primary_10_1016_j_palaeo_2012_10_028 crossref_primary_10_1134_S0013873816020093 crossref_primary_10_3897_vz_73_e101329 crossref_primary_10_1046_j_1463_6409_2000_00035_x crossref_primary_10_1111_j_1420_9101_2010_02197_x crossref_primary_10_1111_j_1095_8312_2002_tb01721_x crossref_primary_10_1111_j_1095_8312_2007_00866_x crossref_primary_10_1134_S106235900802012X crossref_primary_10_1016_j_anthro_2015_10_010 crossref_primary_10_1186_s12862_016_0611_6 crossref_primary_10_1371_journal_pone_0031314 crossref_primary_10_1080_10635150500234625 crossref_primary_10_1098_rsbl_2021_0212 crossref_primary_10_1038_ncomms9149 crossref_primary_10_1080_00222933_2013_802041 crossref_primary_10_1098_rspb_2013_0665 crossref_primary_10_3897_vz_73_e90979 crossref_primary_10_1098_rsbl_2011_1216 crossref_primary_10_1098_rsbl_2012_0648 crossref_primary_10_1111_j_1095_8312_2009_01246_x crossref_primary_10_1016_j_ympev_2010_11_025 crossref_primary_10_1046_j_0962_1083_2001_01393_x crossref_primary_10_1098_rsos_160462 crossref_primary_10_1134_S1062359022040033 crossref_primary_10_1371_journal_pone_0080563 crossref_primary_10_3897_BDJ_8_e48587 crossref_primary_10_1086_597613 crossref_primary_10_1111_jbi_12578 crossref_primary_10_3390_jdb9030032 crossref_primary_10_1111_j_1096_3642_2011_00726_x crossref_primary_10_1016_j_ympev_2013_03_022 crossref_primary_10_1017_S0024282919000392 crossref_primary_10_1080_08912963_2022_2103693 crossref_primary_10_1007_s10530_008_9259_5 crossref_primary_10_1111_j_1096_3642_2009_00553_x crossref_primary_10_1655_02_25 crossref_primary_10_1016_j_ympev_2012_08_018 crossref_primary_10_1554_05_024_1 crossref_primary_10_1017_S1464793103006134 crossref_primary_10_1080_10635150701491156 crossref_primary_10_1126_science_1058875 crossref_primary_10_3897_zse_92_7469 crossref_primary_10_1002_jmor_20330 crossref_primary_10_1002_ar_10096 crossref_primary_10_1098_rspb_2000_1417 crossref_primary_10_1111_j_1095_8312_2007_00911_x crossref_primary_10_1111_j_1365_2699_2005_01355_x crossref_primary_10_1080_08912960903302128 crossref_primary_10_1016_j_gene_2014_02_021 crossref_primary_10_1098_rspb_2004_2806 crossref_primary_10_1002_mmnz_200600021 crossref_primary_10_1007_s10531_022_02499_2 crossref_primary_10_1098_rspb_2004_2802 crossref_primary_10_52547_JAD_2020_2_4_2 crossref_primary_10_1111_zsc_12266 crossref_primary_10_1073_pnas_0501104102 crossref_primary_10_1080_02724634_2023_2184696 crossref_primary_10_1080_10635150500234641 crossref_primary_10_1111_bij_12878 crossref_primary_10_1006_mpev_2000_0905 crossref_primary_10_1111_j_1365_294X_2005_02550_x crossref_primary_10_1080_10635150490522340 crossref_primary_10_1111_j_1095_8312_2012_01988_x crossref_primary_10_7717_peerj_17277 crossref_primary_10_1038_srep34014 crossref_primary_10_1006_mpev_2001_1041 crossref_primary_10_1016_j_jhevol_2010_03_015 crossref_primary_10_1006_mpev_2000_0908 crossref_primary_10_3724_SP_J_1245_2011_00117 crossref_primary_10_1016_j_ympev_2008_03_022 crossref_primary_10_1093_molbev_msr181 crossref_primary_10_18563_pv_44_1_e1 crossref_primary_10_1080_14772000_2017_1282553 crossref_primary_10_1007_s12686_012_9645_2 crossref_primary_10_1111_j_1558_5646_2010_01211_x crossref_primary_10_1111_j_1095_8312_2005_00485_x crossref_primary_10_1098_rspb_2002_2050 crossref_primary_10_1093_zoolinnean_zlab107 crossref_primary_10_1080_19401730802449162 crossref_primary_10_1554_04_208 crossref_primary_10_1655_HERPETOLOGICA_D_13_00087 crossref_primary_10_1111_j_1365_294X_2007_03611_x crossref_primary_10_1655_02_48 crossref_primary_10_1111_j_1439_0469_2012_00662_x crossref_primary_10_1080_10635150500234534 crossref_primary_10_1002_jez_1133 crossref_primary_10_1186_1471_2148_9_131 crossref_primary_10_1046_j_1365_2699_2003_00895_x crossref_primary_10_1134_S0012496614020148 crossref_primary_10_1016_j_crpv_2015_05_008 crossref_primary_10_1002_tax_12794 crossref_primary_10_1080_03115518_2012_688688 crossref_primary_10_1554_02_227 crossref_primary_10_1080_08912963_2018_1425408 crossref_primary_10_1671_0272_4634_2002_022_0299_FLFTJK_2_0_CO_2 |
ContentType | Journal Article |
Copyright | 2000 Society of Systematic Biologists 2000 |
Copyright_xml | – notice: 2000 Society of Systematic Biologists 2000 |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1093/sysbio/49.2.233 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Biology Ecology |
EISSN | 1076-836X |
EndPage | 256 |
ExternalDocumentID | 10_1093_sysbio_49_2_233 10.1093/sysbio/49.2.233 ark_67375_HXZ_DKJVQ4LP_4 |
GroupedDBID | --- -~X .-4 .2P .I3 0R~ 123 18M 1TH 29Q 2FS 36B 3V. 4.4 48X 53G 5VS 5WD 6.Y 70D 7X7 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8G5 AAHBH AAHKG AAIMJ AAISJ AAJKP AAJQQ AAKGQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT ABBHK ABDBF ABEJV ABEUO ABIXL ABJNI ABMNT ABNKS ABPLY ABPPZ ABPTD ABQLI ABSAR ABSMQ ABTAH ABTLG ABUWG ABWST ABXSQ ABXVV ABZBJ ACCCW ACFRR ACGEJ ACGFO ACGFS ACGOD ACIPB ACMRT ACNCT ACPQN ACPRK ACSTJ ACUFI ACUTJ ACZBC ADACV ADBBV ADEYI ADFTL ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRIX ADRTK ADULT ADVEK ADXPE ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFAZZ AFFZL AFGWE AFIYH AFKRA AFKVX AFOFC AFSHK AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AGUYK AHMBA AHXOZ AHXPO AIAGR AIJHB AILXY AJEEA AJWEG AKHUL AKWXX ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD APIBT APJGH APWMN AQDSO AQVQM ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AYOIW AZFZN AZQEC BAYMD BBNVY BCRHZ BENPR BES BEYMZ BHONS BHPHI BKSAR BPHCQ BQDIO BSCLL BSWAC BVXVI C45 CAG CBGCD CCPQU CDBKE COF CS3 CUYZI CXTWN CZ4 D1J DAKXR DEVKO DFGAJ DILTD DOOOF DU5 DWQXO D~K EAD EAP EAS EBC EBD EBS EE~ EHN EJD ELUNK EMB EMK EMOBN EPL EPT EST ESX F5P F9B FEDTE FHSFR FLUFQ FOEOM FQBLK FYUFA GAUVT GJXCC GNUQQ GTFYD GUQSH H13 H5~ HAR HCIFZ HF~ HGD HMCUK HQ2 HTVGU HVGLF HW0 HZ~ I-F IOX IPSME J21 JAAYA JBMMH JBS JEB JEFFH JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JXSIZ KAQDR KBUDW KOP KSI KSN LK8 M-Z M0L M1P M2O M2P M2Q M49 M7P MBTAY MVM N9A NEJ NGC NLBLG NOMLY NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OJQWA OJZSN OVD OWPYF O~Y P2P PADUT PAFKI PB- PCBAR PEELM PQQKQ PROAC PSQYO Q1. Q5Y QBD Q~Q RD5 ROX ROZ RUSNO RW1 RWL RXO RXW S0X SA0 SV3 TAE TCN TEORI TLC TN5 TUS UBC UKHRP VQA WH7 WHG X7H XOL XSW YAYTL YKOAZ YXANX YXE ZCG ZY4 ~02 ~91 AASNB AAYXX CITATION |
ID | FETCH-LOGICAL-c351t-ceb358496dff1a015dc55ea205b8a4eb04302bc4fb128601c2e6070773deda2a3 |
ISSN | 1063-5157 |
IngestDate | Thu Nov 21 21:50:39 EST 2024 Wed Sep 11 04:47:46 EDT 2024 Wed Oct 30 09:36:20 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Sauria Agamidae Iguania mitochondrial DNA phylogenetics Reptilia Acrodonta Chamaeleonidae plate tectonics |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c351t-ceb358496dff1a015dc55ea205b8a4eb04302bc4fb128601c2e6070773deda2a3 |
Notes | ark:/67375/HXZ-DKJVQ4LP-4 istex:190A097465D351AF4646BE1777B1A978547C9611 |
OpenAccessLink | https://academic.oup.com/sysbio/article-pdf/49/2/233/19502413/49-2-233.pdf |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1093_sysbio_49_2_233 oup_primary_10_1093_sysbio_49_2_233 istex_primary_ark_67375_HXZ_DKJVQ4LP_4 |
PublicationCentury | 2000 |
PublicationDate | 2000-06 20000601 2000-6-00 |
PublicationDateYYYYMMDD | 2000-06-01 |
PublicationDate_xml | – month: 06 year: 2000 text: 2000-06 |
PublicationDecade | 2000 |
PublicationTitle | Systematic biology |
PublicationYear | 2000 |
Publisher | Society of Systematic Biologists |
Publisher_xml | – name: Society of Systematic Biologists |
SSID | ssj0011651 |
Score | 2.1799865 |
Snippet | A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions from a... Abstract A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions... |
SourceID | crossref oup istex |
SourceType | Aggregation Database Publisher |
StartPage | 233 |
SubjectTerms | Acrodonta Agamidae Chamaeleonidae Iguania mitochondrial DNA phylogenetics plate tectonics Reptilia Sauria |
Title | Evaluating Trans-Tethys Migration: An Example Using Acrodont Lizard Phylogenetics |
URI | https://api.istex.fr/ark:/67375/HXZ-DKJVQ4LP-4/fulltext.pdf |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ra9swEBdpw2Bfxp4seyHYGANjN5b83Dd39Qjdg5ZmIfSLkWyp3Vqckcdo99fvZMmyw2DrPuyLEUJWkrtfznfy3e8QeiUllWEMkWqUpMQNUmUHfZ64YUpkPK6okKGqRp6cxJ_nyUEe5INB23ewm_uvmoY50LWqnP0HbdtNYQLGoHO4gtbheiO954a-uz7TxOXuVChdOJ--ni1tJkdWO_kVU8TAjs4ZyBTz66JeQ4z-Ux0sHJ1DIA-foUocV30H9qRjfjb8Tb0zbX38feiZfO3uJc_55lK34WuScp3Ms3lAbGlKvjLAowVqVrP6m_jBtP1XJI3M2fe2TijGXSaVPqE06aeqCKf7jrrVJkC5dyYJ4Sl1wcHST2Bh5uLITWjT7tCabM1yaqBJ-vZXs2qYRznRnOW_PSUMg9b1CgSlej-lHvHsnVvk239YvYOGBIwb2NZhtj-fzey7Kz9qmn7aH9MSSqV0T2-y126x5QsN1d_6StdZ9lyc6V10x8QmONOguocGor6PbmkRXsMoL9vR6aIZPUDHHdxwH27Ywu0tzmpswIYbsOEWbFiDDW-B7SH68j6fvpu4pkuHW9LQX7ul4BS82DSqpPQZeJdVGYaCkXHIExYIrkjlCC8DycEVgvC_JCJSHFMxrUTFCKOP0G69qMVjhME4VODxcnCp4S5ecj5mKZWUSBH7ZRWP0JtWXsV3TcZS6CQKWmjRFkFakAJEO0KvG3nadWx5oXIY47CYzE-Lgw-Hs-Pg41ERjNBLEPjftntyo1VP0e0O_8_Q7nq5Ec_RzqravDAg-QWpB5ft |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+Trans-Tethys+Migration%3A+An+Example+Using+Acrodont+Lizard+Phylogenetics&rft.jtitle=Systematic+biology&rft.au=Macey%2C+J.+Robert&rft.au=Schulte%2C+James+A.&rft.au=Larson%2C+Allan&rft.au=Ananjeva%2C+Natalia+B.&rft.date=2000-06-01&rft.pub=Society+of+Systematic+Biologists&rft.issn=1063-5157&rft.eissn=1076-836X&rft.volume=49&rft.issue=2&rft.spage=233&rft.epage=256&rft_id=info:doi/10.1093%2Fsysbio%2F49.2.233&rft.externalDocID=10.1093%2Fsysbio%2F49.2.233 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5157&client=summon |