Thermal modeling of geometry of single-track deposition in micro-plasma transferred arc deposition process

•Thermal model to predict deposition width and height in the μ-PTA deposition process.•Use of fundamental principles of energy balance and heat transfer.•Deposition geometry modeled as function of input power, volumetric deposition rate, worktable travel speed.•Close agreement between model predicti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials processing technology Vol. 230; pp. 121 - 130
Main Authors: Nikam, Sagar H., Jain, Neelesh K., Jhavar, Suyog
Format: Journal Article
Language:English
Published: Elsevier B.V 01-04-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Thermal model to predict deposition width and height in the μ-PTA deposition process.•Use of fundamental principles of energy balance and heat transfer.•Deposition geometry modeled as function of input power, volumetric deposition rate, worktable travel speed.•Close agreement between model prediction and experimental results validates the model.•Model has wide applicability as it depends on thermal properties of deposition and substrate materials.•Can be used for any form of the deposition material. Micro-plasma transferred arc (μ-PTA) deposition process is a recently developed material and energy efficient additive layer manufacturing process for metallic deposition which is capable of bridging the gap between capabilities of high energy based and conventional arc-based deposition processes. Development of model of deposition geometry is essential to study the relationship and influence of various process parameters on the deposition geometry parameters. This paper reports development of a thermal model to predict single track deposition width and height in terms of three important process parameters of μ-PTA deposition process (i.e. input power, volumetric deposition rate and travel speed of worktable) using fundamental principles of energy balance and heat transfer. The developed model was validated by comparing the model predicted results with the experimental results of single track deposition geometries corresponding to various parametric combinations in the μ-PTA deposition process. The predicted values were found in very good agreement with the experimental results thus validating the developed models. The developed model has wide applicability because it depends only on thermal properties of the substrate and deposition materials and is independent of form of the deposition material therefore it can be used for predicting deposition geometry for any combination of substrate and deposition materials and for any form of the deposition material.
AbstractList Micro-plasma transferred arc ( mu -PTA) deposition process is a recently developed material and energy efficient additive layer manufacturing process for metallic deposition which is capable of bridging the gap between capabilities of high energy based and conventional arc-based deposition processes. Development of model of deposition geometry is essential to study the relationship and influence of various process parameters on the deposition geometry parameters. This paper reports development of a thermal model to predict single track deposition width and height in terms of three important process parameters of mu -PTA deposition process (i.e. input power, volumetric deposition rate and travel speed of worktable) using fundamental principles of energy balance and heat transfer. The developed model was validated by comparing the model predicted results with the experimental results of single track deposition geometries corresponding to various parametric combinations in the mu -PTA deposition process. The predicted values were found in very good agreement with the experimental results thus validating the developed models. The developed model has wide applicability because it depends only on thermal properties of the substrate and deposition materials and is independent of form of the deposition material therefore it can be used for predicting deposition geometry for any combination of substrate and deposition materials and for any form of the deposition material.
•Thermal model to predict deposition width and height in the μ-PTA deposition process.•Use of fundamental principles of energy balance and heat transfer.•Deposition geometry modeled as function of input power, volumetric deposition rate, worktable travel speed.•Close agreement between model prediction and experimental results validates the model.•Model has wide applicability as it depends on thermal properties of deposition and substrate materials.•Can be used for any form of the deposition material. Micro-plasma transferred arc (μ-PTA) deposition process is a recently developed material and energy efficient additive layer manufacturing process for metallic deposition which is capable of bridging the gap between capabilities of high energy based and conventional arc-based deposition processes. Development of model of deposition geometry is essential to study the relationship and influence of various process parameters on the deposition geometry parameters. This paper reports development of a thermal model to predict single track deposition width and height in terms of three important process parameters of μ-PTA deposition process (i.e. input power, volumetric deposition rate and travel speed of worktable) using fundamental principles of energy balance and heat transfer. The developed model was validated by comparing the model predicted results with the experimental results of single track deposition geometries corresponding to various parametric combinations in the μ-PTA deposition process. The predicted values were found in very good agreement with the experimental results thus validating the developed models. The developed model has wide applicability because it depends only on thermal properties of the substrate and deposition materials and is independent of form of the deposition material therefore it can be used for predicting deposition geometry for any combination of substrate and deposition materials and for any form of the deposition material.
Author Jain, Neelesh K.
Jhavar, Suyog
Nikam, Sagar H.
Author_xml – sequence: 1
  givenname: Sagar H.
  surname: Nikam
  fullname: Nikam, Sagar H.
  organization: Discipline of Mechanical Engineering, Indian Institute of Technology Indore, MP, India
– sequence: 2
  givenname: Neelesh K.
  orcidid: 0000-0002-1168-0617
  surname: Jain
  fullname: Jain, Neelesh K.
  email: nkjain@iiti.ac.in
  organization: Discipline of Mechanical Engineering, Indian Institute of Technology Indore, MP, India
– sequence: 3
  givenname: Suyog
  surname: Jhavar
  fullname: Jhavar, Suyog
  organization: University of Texas, Rio Grande Valley, Edinburg, TX, USA
BookMark eNqFkMtOxDAMRbMAiec_ZMmmJU7aTrsExEsaic2wjtzUGVLapiQdJP6ejAYJdqxsWcfXvveMHU1-IsY4iBwEVNd93o-4zMEvZHIpoMwBciHlETsVjSwyAao6YWcx9kLAStT1Kes3bxRGHPjoOxrctOXe8i35kZbwte9jmg2ULQHNO-9o9tEtzk_cTXx0JvhsHjCOyBMwRUshUMcxmL9oeshQjBfs2OIQ6fKnnrPXh_vN3VO2fnl8vrtZZ0aVsGQrKq2EWmKhABspFaLAshVgW1XUQrRd05aFwkJWpUVZtfWqbVZkbUWAypbqnF0ddNPdjx3FRY8uGhoGnMjvok7aZVErqKuE1gc0GYkxkNVzcCOGLw1C7yPVvf6NVO8j1QA6RZpWbw-rlKx8Ogo6GkeToc4FMovuvPtf5Bu404so
CitedBy_id crossref_primary_10_1007_s00170_022_10144_z
crossref_primary_10_1007_s11665_017_2828_y
crossref_primary_10_1016_j_ijmecsci_2019_105166
crossref_primary_10_1115_1_4040324
crossref_primary_10_1007_s00170_017_1472_x
crossref_primary_10_1007_s11661_016_3917_5
crossref_primary_10_1016_j_matpr_2020_11_840
crossref_primary_10_1051_metal_2020088
crossref_primary_10_1016_j_cirpj_2024_01_010
crossref_primary_10_1016_j_matpr_2020_09_756
crossref_primary_10_1007_s12541_016_0119_4
crossref_primary_10_1016_j_jmrt_2021_12_124
crossref_primary_10_1007_s00170_022_10110_9
crossref_primary_10_1007_s00170_021_08643_6
crossref_primary_10_1007_s00170_020_05218_9
crossref_primary_10_1016_j_jallcom_2016_08_007
crossref_primary_10_1016_j_jmatprotec_2017_05_043
crossref_primary_10_15407_ufm_24_04_686
crossref_primary_10_3390_app8020207
crossref_primary_10_3390_ma14195662
crossref_primary_10_1007_s00170_019_04658_2
crossref_primary_10_1016_j_jmatprotec_2020_116978
Cites_doi 10.2351/1.2402518
10.3365/met.mat.2008.12.779
10.1088/0022-3727/30/9/004
10.1016/j.jmatprotec.2011.01.018
10.1088/0022-3727/37/14/003
10.2351/1.1585087
10.1080/10426914.2014.892984
10.1016/j.cad.2011.01.006
10.1016/j.jmatprotec.2007.06.090
10.1016/j.rcim.2010.11.002
10.1016/S1359-6462(03)00020-4
10.1016/j.jmatprotec.2013.12.016
10.2351/1.521888
10.1016/S1526-6125(06)70096-2
10.1016/j.jmatprotec.2010.11.014
10.1016/j.jmatprotec.2012.03.016
10.1016/j.matdes.2013.09.006
10.1016/j.rcim.2012.09.011
10.1007/s00170-005-0318-0
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7SR
8BQ
8FD
H8D
JG9
L7M
DOI 10.1016/j.jmatprotec.2015.11.022
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Aerospace Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 130
ExternalDocumentID 10_1016_j_jmatprotec_2015_11_022
S0924013615302089
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SSM
SST
SSZ
T5K
WUQ
XFK
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SR
8BQ
8FD
H8D
JG9
L7M
ID FETCH-LOGICAL-c351t-7e5f2182a431a9223aa0a5b01fb34800bd9b543a4265fa26b87b97eff6e1a3f53
ISSN 0924-0136
IngestDate Fri Oct 25 23:36:49 EDT 2024
Thu Sep 26 17:59:52 EDT 2024
Fri Feb 23 02:33:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Additive layer manufacturing
Deposition geometry
Thermal model
Metallic deposition
Micro-plasma
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-7e5f2182a431a9223aa0a5b01fb34800bd9b543a4265fa26b87b97eff6e1a3f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1168-0617
PQID 1825483186
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1825483186
crossref_primary_10_1016_j_jmatprotec_2015_11_022
elsevier_sciencedirect_doi_10_1016_j_jmatprotec_2015_11_022
PublicationCentury 2000
PublicationDate April 2016
2016-04-00
20160401
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationTitle Journal of materials processing technology
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jhavar, Jain, Paul (bib0040) 2014; 214
Incropera, Dewitt, Bergman, Lavine (bib0035) 2007
Hua, Jing, Xin, Fengying, Weidong (bib0030) 2008; 198
Alimardani, Toyserkani, Huissoon (bib0010) 2007; 19
Lalas, Tsirbas, Salonitis, Chryssolouris (bib0050) 2007; 32
Baufeld, Brandl, Biest (bib0015) 2011; 211
Lakshminarayanan, Balasubramanian, Varahamoorthy, Babu (bib0060) 2008; 14
Liu, DuPont (bib0070) 2003; 48
Cheikh, Courant, Hascoet, Guillen (bib0025) 2012; 212
Suryakumar, Karunakaran, Bernard, Chandrasekhar, Raghavender, Sharma (bib0085) 2011; 43
Jhavar, Jain, Paul (bib0045) 2014; 29
Xiong, Zhang, Gao, Wu (bib0100) 2013; 29
Zhang, Wang, Liu, Shang (bib0105) 2014; 55
Pinkerton, Li (bib0080) 2004; 37
MATLAB (version R2010A), 2015© MathWork Inc. Natick, Massachusetts (USA).
Liu, Li (bib0065) 2006; 8
Toyserkani, Khajepour, Corbin (bib0090) 2003; 15
Vilar (bib0095) 1999; 11
Cao, Zhu, Liang, Wang (bib0020) 2011; 27
Lampa, Kaplan, Powell, Magnusson (bib0055) 1997; 30
Ahsan, Paul, Kukreja, Pinkerton (bib0005) 2011; 211
Liu (10.1016/j.jmatprotec.2015.11.022_bib0070) 2003; 48
Alimardani (10.1016/j.jmatprotec.2015.11.022_bib0010) 2007; 19
Zhang (10.1016/j.jmatprotec.2015.11.022_bib0105) 2014; 55
Lalas (10.1016/j.jmatprotec.2015.11.022_bib0050) 2007; 32
Lakshminarayanan (10.1016/j.jmatprotec.2015.11.022_bib0060) 2008; 14
Lampa (10.1016/j.jmatprotec.2015.11.022_bib0055) 1997; 30
Xiong (10.1016/j.jmatprotec.2015.11.022_bib0100) 2013; 29
Jhavar (10.1016/j.jmatprotec.2015.11.022_bib0045) 2014; 29
Pinkerton (10.1016/j.jmatprotec.2015.11.022_bib0080) 2004; 37
Toyserkani (10.1016/j.jmatprotec.2015.11.022_bib0090) 2003; 15
Cao (10.1016/j.jmatprotec.2015.11.022_bib0020) 2011; 27
Incropera (10.1016/j.jmatprotec.2015.11.022_bib0035) 2007
Ahsan (10.1016/j.jmatprotec.2015.11.022_bib0005) 2011; 211
Cheikh (10.1016/j.jmatprotec.2015.11.022_bib0025) 2012; 212
Liu (10.1016/j.jmatprotec.2015.11.022_bib0065) 2006; 8
Jhavar (10.1016/j.jmatprotec.2015.11.022_bib0040) 2014; 214
Baufeld (10.1016/j.jmatprotec.2015.11.022_bib0015) 2011; 211
Vilar (10.1016/j.jmatprotec.2015.11.022_bib0095) 1999; 11
10.1016/j.jmatprotec.2015.11.022_bib0075
Suryakumar (10.1016/j.jmatprotec.2015.11.022_bib0085) 2011; 43
Hua (10.1016/j.jmatprotec.2015.11.022_bib0030) 2008; 198
References_xml – volume: 30
  start-page: 1293
  year: 1997
  end-page: 1299
  ident: bib0055
  article-title: An analytical thermodynamic model of laser welding
  publication-title: J. Phys. D: Appl. Phys.
  contributor:
    fullname: Magnusson
– volume: 43
  start-page: 331
  year: 2011
  end-page: 344
  ident: bib0085
  article-title: Weld bead modeling and process optimization in hybrid layered manufacturing
  publication-title: Comput. Aided Des.
  contributor:
    fullname: Sharma
– volume: 15
  start-page: 153
  year: 2003
  end-page: 160
  ident: bib0090
  article-title: Three-dimensional finite element modeling of laser cladding by powder injection: effects of powder feed rate and travel speed on the process
  publication-title: J. Laser Appl.
  contributor:
    fullname: Corbin
– volume: 29
  start-page: 1017
  year: 2014
  end-page: 1023
  ident: bib0045
  article-title: Enhancement of deposition quality in micro-plasma transferred arc deposition process
  publication-title: Mater. Manuf. Processes
  contributor:
    fullname: Paul
– volume: 29
  start-page: 417
  year: 2013
  end-page: 423
  ident: bib0100
  article-title: Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing
  publication-title: Robot. Comput. Integr. Manuf.
  contributor:
    fullname: Wu
– year: 2007
  ident: bib0035
  article-title: Fundamentals of Heat and Mass Transfer
  contributor:
    fullname: Lavine
– volume: 55
  start-page: 104
  year: 2014
  end-page: 119
  ident: bib0105
  article-title: Characterization of stainless steel parts by laser metal deposition shaping
  publication-title: Mater. Des.
  contributor:
    fullname: Shang
– volume: 212
  start-page: 1832
  year: 2012
  end-page: 1839
  ident: bib0025
  article-title: Prediction and analytical description of the single laser track geometry in direct laser fabrication from process parameters and energy balance reasoning
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Guillen
– volume: 27
  start-page: 641
  year: 2011
  end-page: 645
  ident: bib0020
  article-title: Overlapping model of beads and curve fitting of bead section for rapid manufacturing by robotic MAG welding process
  publication-title: Robot. Comput. Integr. Manuf.
  contributor:
    fullname: Wang
– volume: 19
  start-page: 14
  year: 2007
  end-page: 25
  ident: bib0010
  article-title: Three-dimensional numerical approach for geometrical prediction of multilayer laser solid freeform fabrication process
  publication-title: J. Laser Appl.
  contributor:
    fullname: Huissoon
– volume: 198
  start-page: 454
  year: 2008
  end-page: 462
  ident: bib0030
  article-title: Research on molten pool temperature in the process of laser rapid forming
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Weidong
– volume: 214
  start-page: 1102
  year: 2014
  end-page: 1110
  ident: bib0040
  article-title: Development of micro-plasma transferred arc (μ-PTA) wire deposition process for additive layer manufacturing applications
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Paul
– volume: 211
  start-page: 1146
  year: 2011
  end-page: 1158
  ident: bib0015
  article-title: Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Biest
– volume: 14
  start-page: 779
  year: 2008
  end-page: 789
  ident: bib0060
  article-title: Predicting the dilution of plasma transferred arc hardfacing of satellite on carbon steel using response surface methodology
  publication-title: Metals Mater. Int.
  contributor:
    fullname: Babu
– volume: 11
  start-page: 64
  year: 1999
  end-page: 79
  ident: bib0095
  article-title: Laser cladding
  publication-title: J. Laser Appl.
  contributor:
    fullname: Vilar
– volume: 32
  start-page: 34
  year: 2007
  end-page: 41
  ident: bib0050
  article-title: An analytical model of the laser clad geometry
  publication-title: Int. J. Adv. Manuf. Technol.
  contributor:
    fullname: Chryssolouris
– volume: 48
  start-page: 1337
  year: 2003
  end-page: 1342
  ident: bib0070
  article-title: Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping
  publication-title: Scr. Mater.
  contributor:
    fullname: DuPont
– volume: 8
  start-page: 1
  year: 2006
  end-page: 7
  ident: bib0065
  article-title: Direct fabrication of thin-wall parts by laser cladding
  publication-title: J. Manuf. Processes
  contributor:
    fullname: Li
– volume: 211
  start-page: 602
  year: 2011
  end-page: 609
  ident: bib0005
  article-title: Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications; modelling and experimental investigation
  publication-title: J. Mater. Process. Technol.
  contributor:
    fullname: Pinkerton
– volume: 37
  start-page: 1885
  year: 2004
  end-page: 1895
  ident: bib0080
  article-title: Modeling the geometry of a moving laser melt pool and deposition track via energy and mass balances
  publication-title: J. Appl. Phys. D: Appl. Phys.
  contributor:
    fullname: Li
– volume: 19
  start-page: 14
  issue: 1
  year: 2007
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0010
  article-title: Three-dimensional numerical approach for geometrical prediction of multilayer laser solid freeform fabrication process
  publication-title: J. Laser Appl.
  doi: 10.2351/1.2402518
  contributor:
    fullname: Alimardani
– volume: 14
  start-page: 779
  issue: 6
  year: 2008
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0060
  article-title: Predicting the dilution of plasma transferred arc hardfacing of satellite on carbon steel using response surface methodology
  publication-title: Metals Mater. Int.
  doi: 10.3365/met.mat.2008.12.779
  contributor:
    fullname: Lakshminarayanan
– volume: 30
  start-page: 1293
  year: 1997
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0055
  article-title: An analytical thermodynamic model of laser welding
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/30/9/004
  contributor:
    fullname: Lampa
– volume: 211
  start-page: 1146
  year: 2011
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0015
  article-title: Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2011.01.018
  contributor:
    fullname: Baufeld
– volume: 37
  start-page: 1885
  year: 2004
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0080
  article-title: Modeling the geometry of a moving laser melt pool and deposition track via energy and mass balances
  publication-title: J. Appl. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/37/14/003
  contributor:
    fullname: Pinkerton
– volume: 15
  start-page: 153
  issue: 3
  year: 2003
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0090
  article-title: Three-dimensional finite element modeling of laser cladding by powder injection: effects of powder feed rate and travel speed on the process
  publication-title: J. Laser Appl.
  doi: 10.2351/1.1585087
  contributor:
    fullname: Toyserkani
– volume: 29
  start-page: 1017
  year: 2014
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0045
  article-title: Enhancement of deposition quality in micro-plasma transferred arc deposition process
  publication-title: Mater. Manuf. Processes
  doi: 10.1080/10426914.2014.892984
  contributor:
    fullname: Jhavar
– volume: 43
  start-page: 331
  year: 2011
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0085
  article-title: Weld bead modeling and process optimization in hybrid layered manufacturing
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2011.01.006
  contributor:
    fullname: Suryakumar
– volume: 198
  start-page: 454
  year: 2008
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0030
  article-title: Research on molten pool temperature in the process of laser rapid forming
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.06.090
  contributor:
    fullname: Hua
– volume: 27
  start-page: 641
  year: 2011
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0020
  article-title: Overlapping model of beads and curve fitting of bead section for rapid manufacturing by robotic MAG welding process
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2010.11.002
  contributor:
    fullname: Cao
– volume: 48
  start-page: 1337
  year: 2003
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0070
  article-title: Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(03)00020-4
  contributor:
    fullname: Liu
– volume: 214
  start-page: 1102
  year: 2014
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0040
  article-title: Development of micro-plasma transferred arc (μ-PTA) wire deposition process for additive layer manufacturing applications
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2013.12.016
  contributor:
    fullname: Jhavar
– volume: 11
  start-page: 64
  issue: 2
  year: 1999
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0095
  article-title: Laser cladding
  publication-title: J. Laser Appl.
  doi: 10.2351/1.521888
  contributor:
    fullname: Vilar
– volume: 8
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0065
  article-title: Direct fabrication of thin-wall parts by laser cladding
  publication-title: J. Manuf. Processes
  doi: 10.1016/S1526-6125(06)70096-2
  contributor:
    fullname: Liu
– volume: 211
  start-page: 602
  year: 2011
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0005
  article-title: Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications; modelling and experimental investigation
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2010.11.014
  contributor:
    fullname: Ahsan
– volume: 212
  start-page: 1832
  year: 2012
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0025
  article-title: Prediction and analytical description of the single laser track geometry in direct laser fabrication from process parameters and energy balance reasoning
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2012.03.016
  contributor:
    fullname: Cheikh
– volume: 55
  start-page: 104
  year: 2014
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0105
  article-title: Characterization of stainless steel parts by laser metal deposition shaping
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.09.006
  contributor:
    fullname: Zhang
– volume: 29
  start-page: 417
  year: 2013
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0100
  article-title: Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2012.09.011
  contributor:
    fullname: Xiong
– year: 2007
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0035
  contributor:
    fullname: Incropera
– volume: 32
  start-page: 34
  year: 2007
  ident: 10.1016/j.jmatprotec.2015.11.022_bib0050
  article-title: An analytical model of the laser clad geometry
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-005-0318-0
  contributor:
    fullname: Lalas
– ident: 10.1016/j.jmatprotec.2015.11.022_bib0075
SSID ssj0017088
Score 2.3471987
Snippet •Thermal model to predict deposition width and height in the μ-PTA deposition process.•Use of fundamental principles of energy balance and heat...
Micro-plasma transferred arc ( mu -PTA) deposition process is a recently developed material and energy efficient additive layer manufacturing process for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 121
SubjectTerms Additive layer manufacturing
Arc deposition
Deposition
Deposition geometry
Mathematical models
Metallic deposition
Micro-plasma
Process parameters
Substrates
Thermal analysis
Thermal model
Thermal properties
Tracking
Title Thermal modeling of geometry of single-track deposition in micro-plasma transferred arc deposition process
URI https://dx.doi.org/10.1016/j.jmatprotec.2015.11.022
https://search.proquest.com/docview/1825483186
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbZ7KU9lD7p9oUKvS0Olm3ZDj0tbUraQi7Zwt7M2Jaym93YIY9C_31nMnJsNl3YUnoxRpajWPNZ-jz6ZiTEB22CMgwBmVtgwYsiP_Ro3vEiGxtro7TIc_JDjqfJ5CL9PIpGvV4jdm_L_qulsQxtTZGzf2Ht_Y9iAZ6jzfGIVsfjfe2OY-0Nb3HjJM0zUy_MhhfTyTdwY7zNCopr0sE60Rb5PRYkzvOWyKcXQHtHIKM1K9KnUzx_p-qSgwvu4LVIgfk5m3q7gKwDD_7k6pqxOIUZrE7Hg72WBzitwcTgjLi-PP3eXrmEn6wHn25_1bOuw0LFHZ3Lzot2EEnD7siAanEylGZkDtySDY-tikOp3TSt-NrBDMDOiPlgjk_LqS5Iv6cHlKqVI6Bv5deeUtPUsqINlPx0eCSOAxy1dF8cn30dXXzbL0ol_m4b0_1fdcIwlgv-ub272M6teX9HZs4fi0fOWvKM4fNE9Ez1VDzs5KZ8JuYOSLIBkqytbIBE510gyRYd8qqSXSDJDpAkAqlb1QHkufjxZXT-aey5jTm8ItRq4yVGW8r8D8g-YYgEE8AHnfvK5mGEXyB5Ocx1FAKyP20hiPM0yYcJvvuxURBaHb4Q_aquzEshLY76ZWGQ9hYRMvsUihhvz1WYln4EWp8I1XRgtuT8K1kjTJxnbadn1On4OZthp5-Ij01PZ45HMj_MECT3uPt9Y5wMh1paP4PK1Nt1psibkuIkGL_6pxZeiwfte_FG9DerrXkrjtbl9p2D3G8zpqxs
link.rule.ids 315,782,786,27935,27936
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+modeling+of+geometry+of+single-track+deposition+in+micro-plasma+transferred+arc+deposition+process&rft.jtitle=Journal+of+materials+processing+technology&rft.au=Nikam%2C+Sagar+H.&rft.au=Jain%2C+Neelesh+K.&rft.au=Jhavar%2C+Suyog&rft.date=2016-04-01&rft.pub=Elsevier+B.V&rft.issn=0924-0136&rft.volume=230&rft.spage=121&rft.epage=130&rft_id=info:doi/10.1016%2Fj.jmatprotec.2015.11.022&rft.externalDocID=S0924013615302089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-0136&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-0136&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-0136&client=summon