Thermal modeling of geometry of single-track deposition in micro-plasma transferred arc deposition process
•Thermal model to predict deposition width and height in the μ-PTA deposition process.•Use of fundamental principles of energy balance and heat transfer.•Deposition geometry modeled as function of input power, volumetric deposition rate, worktable travel speed.•Close agreement between model predicti...
Saved in:
Published in: | Journal of materials processing technology Vol. 230; pp. 121 - 130 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-04-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •Thermal model to predict deposition width and height in the μ-PTA deposition process.•Use of fundamental principles of energy balance and heat transfer.•Deposition geometry modeled as function of input power, volumetric deposition rate, worktable travel speed.•Close agreement between model prediction and experimental results validates the model.•Model has wide applicability as it depends on thermal properties of deposition and substrate materials.•Can be used for any form of the deposition material.
Micro-plasma transferred arc (μ-PTA) deposition process is a recently developed material and energy efficient additive layer manufacturing process for metallic deposition which is capable of bridging the gap between capabilities of high energy based and conventional arc-based deposition processes. Development of model of deposition geometry is essential to study the relationship and influence of various process parameters on the deposition geometry parameters. This paper reports development of a thermal model to predict single track deposition width and height in terms of three important process parameters of μ-PTA deposition process (i.e. input power, volumetric deposition rate and travel speed of worktable) using fundamental principles of energy balance and heat transfer. The developed model was validated by comparing the model predicted results with the experimental results of single track deposition geometries corresponding to various parametric combinations in the μ-PTA deposition process. The predicted values were found in very good agreement with the experimental results thus validating the developed models. The developed model has wide applicability because it depends only on thermal properties of the substrate and deposition materials and is independent of form of the deposition material therefore it can be used for predicting deposition geometry for any combination of substrate and deposition materials and for any form of the deposition material. |
---|---|
AbstractList | Micro-plasma transferred arc ( mu -PTA) deposition process is a recently developed material and energy efficient additive layer manufacturing process for metallic deposition which is capable of bridging the gap between capabilities of high energy based and conventional arc-based deposition processes. Development of model of deposition geometry is essential to study the relationship and influence of various process parameters on the deposition geometry parameters. This paper reports development of a thermal model to predict single track deposition width and height in terms of three important process parameters of mu -PTA deposition process (i.e. input power, volumetric deposition rate and travel speed of worktable) using fundamental principles of energy balance and heat transfer. The developed model was validated by comparing the model predicted results with the experimental results of single track deposition geometries corresponding to various parametric combinations in the mu -PTA deposition process. The predicted values were found in very good agreement with the experimental results thus validating the developed models. The developed model has wide applicability because it depends only on thermal properties of the substrate and deposition materials and is independent of form of the deposition material therefore it can be used for predicting deposition geometry for any combination of substrate and deposition materials and for any form of the deposition material. •Thermal model to predict deposition width and height in the μ-PTA deposition process.•Use of fundamental principles of energy balance and heat transfer.•Deposition geometry modeled as function of input power, volumetric deposition rate, worktable travel speed.•Close agreement between model prediction and experimental results validates the model.•Model has wide applicability as it depends on thermal properties of deposition and substrate materials.•Can be used for any form of the deposition material. Micro-plasma transferred arc (μ-PTA) deposition process is a recently developed material and energy efficient additive layer manufacturing process for metallic deposition which is capable of bridging the gap between capabilities of high energy based and conventional arc-based deposition processes. Development of model of deposition geometry is essential to study the relationship and influence of various process parameters on the deposition geometry parameters. This paper reports development of a thermal model to predict single track deposition width and height in terms of three important process parameters of μ-PTA deposition process (i.e. input power, volumetric deposition rate and travel speed of worktable) using fundamental principles of energy balance and heat transfer. The developed model was validated by comparing the model predicted results with the experimental results of single track deposition geometries corresponding to various parametric combinations in the μ-PTA deposition process. The predicted values were found in very good agreement with the experimental results thus validating the developed models. The developed model has wide applicability because it depends only on thermal properties of the substrate and deposition materials and is independent of form of the deposition material therefore it can be used for predicting deposition geometry for any combination of substrate and deposition materials and for any form of the deposition material. |
Author | Jain, Neelesh K. Jhavar, Suyog Nikam, Sagar H. |
Author_xml | – sequence: 1 givenname: Sagar H. surname: Nikam fullname: Nikam, Sagar H. organization: Discipline of Mechanical Engineering, Indian Institute of Technology Indore, MP, India – sequence: 2 givenname: Neelesh K. orcidid: 0000-0002-1168-0617 surname: Jain fullname: Jain, Neelesh K. email: nkjain@iiti.ac.in organization: Discipline of Mechanical Engineering, Indian Institute of Technology Indore, MP, India – sequence: 3 givenname: Suyog surname: Jhavar fullname: Jhavar, Suyog organization: University of Texas, Rio Grande Valley, Edinburg, TX, USA |
BookMark | eNqFkMtOxDAMRbMAiec_ZMmmJU7aTrsExEsaic2wjtzUGVLapiQdJP6ejAYJdqxsWcfXvveMHU1-IsY4iBwEVNd93o-4zMEvZHIpoMwBciHlETsVjSwyAao6YWcx9kLAStT1Kes3bxRGHPjoOxrctOXe8i35kZbwte9jmg2ULQHNO-9o9tEtzk_cTXx0JvhsHjCOyBMwRUshUMcxmL9oeshQjBfs2OIQ6fKnnrPXh_vN3VO2fnl8vrtZZ0aVsGQrKq2EWmKhABspFaLAshVgW1XUQrRd05aFwkJWpUVZtfWqbVZkbUWAypbqnF0ddNPdjx3FRY8uGhoGnMjvok7aZVErqKuE1gc0GYkxkNVzcCOGLw1C7yPVvf6NVO8j1QA6RZpWbw-rlKx8Ogo6GkeToc4FMovuvPtf5Bu404so |
CitedBy_id | crossref_primary_10_1007_s00170_022_10144_z crossref_primary_10_1007_s11665_017_2828_y crossref_primary_10_1016_j_ijmecsci_2019_105166 crossref_primary_10_1115_1_4040324 crossref_primary_10_1007_s00170_017_1472_x crossref_primary_10_1007_s11661_016_3917_5 crossref_primary_10_1016_j_matpr_2020_11_840 crossref_primary_10_1051_metal_2020088 crossref_primary_10_1016_j_cirpj_2024_01_010 crossref_primary_10_1016_j_matpr_2020_09_756 crossref_primary_10_1007_s12541_016_0119_4 crossref_primary_10_1016_j_jmrt_2021_12_124 crossref_primary_10_1007_s00170_022_10110_9 crossref_primary_10_1007_s00170_021_08643_6 crossref_primary_10_1007_s00170_020_05218_9 crossref_primary_10_1016_j_jallcom_2016_08_007 crossref_primary_10_1016_j_jmatprotec_2017_05_043 crossref_primary_10_15407_ufm_24_04_686 crossref_primary_10_3390_app8020207 crossref_primary_10_3390_ma14195662 crossref_primary_10_1007_s00170_019_04658_2 crossref_primary_10_1016_j_jmatprotec_2020_116978 |
Cites_doi | 10.2351/1.2402518 10.3365/met.mat.2008.12.779 10.1088/0022-3727/30/9/004 10.1016/j.jmatprotec.2011.01.018 10.1088/0022-3727/37/14/003 10.2351/1.1585087 10.1080/10426914.2014.892984 10.1016/j.cad.2011.01.006 10.1016/j.jmatprotec.2007.06.090 10.1016/j.rcim.2010.11.002 10.1016/S1359-6462(03)00020-4 10.1016/j.jmatprotec.2013.12.016 10.2351/1.521888 10.1016/S1526-6125(06)70096-2 10.1016/j.jmatprotec.2010.11.014 10.1016/j.jmatprotec.2012.03.016 10.1016/j.matdes.2013.09.006 10.1016/j.rcim.2012.09.011 10.1007/s00170-005-0318-0 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION 7SR 8BQ 8FD H8D JG9 L7M |
DOI | 10.1016/j.jmatprotec.2015.11.022 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Aerospace Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Aerospace Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 130 |
ExternalDocumentID | 10_1016_j_jmatprotec_2015_11_022 S0924013615302089 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SSM SST SSZ T5K WUQ XFK ~02 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7SR 8BQ 8FD H8D JG9 L7M |
ID | FETCH-LOGICAL-c351t-7e5f2182a431a9223aa0a5b01fb34800bd9b543a4265fa26b87b97eff6e1a3f53 |
ISSN | 0924-0136 |
IngestDate | Fri Oct 25 23:36:49 EDT 2024 Thu Sep 26 17:59:52 EDT 2024 Fri Feb 23 02:33:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Additive layer manufacturing Deposition geometry Thermal model Metallic deposition Micro-plasma |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c351t-7e5f2182a431a9223aa0a5b01fb34800bd9b543a4265fa26b87b97eff6e1a3f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1168-0617 |
PQID | 1825483186 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1825483186 crossref_primary_10_1016_j_jmatprotec_2015_11_022 elsevier_sciencedirect_doi_10_1016_j_jmatprotec_2015_11_022 |
PublicationCentury | 2000 |
PublicationDate | April 2016 2016-04-00 20160401 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: April 2016 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials processing technology |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jhavar, Jain, Paul (bib0040) 2014; 214 Incropera, Dewitt, Bergman, Lavine (bib0035) 2007 Hua, Jing, Xin, Fengying, Weidong (bib0030) 2008; 198 Alimardani, Toyserkani, Huissoon (bib0010) 2007; 19 Lalas, Tsirbas, Salonitis, Chryssolouris (bib0050) 2007; 32 Baufeld, Brandl, Biest (bib0015) 2011; 211 Lakshminarayanan, Balasubramanian, Varahamoorthy, Babu (bib0060) 2008; 14 Liu, DuPont (bib0070) 2003; 48 Cheikh, Courant, Hascoet, Guillen (bib0025) 2012; 212 Suryakumar, Karunakaran, Bernard, Chandrasekhar, Raghavender, Sharma (bib0085) 2011; 43 Jhavar, Jain, Paul (bib0045) 2014; 29 Xiong, Zhang, Gao, Wu (bib0100) 2013; 29 Zhang, Wang, Liu, Shang (bib0105) 2014; 55 Pinkerton, Li (bib0080) 2004; 37 MATLAB (version R2010A), 2015© MathWork Inc. Natick, Massachusetts (USA). Liu, Li (bib0065) 2006; 8 Toyserkani, Khajepour, Corbin (bib0090) 2003; 15 Vilar (bib0095) 1999; 11 Cao, Zhu, Liang, Wang (bib0020) 2011; 27 Lampa, Kaplan, Powell, Magnusson (bib0055) 1997; 30 Ahsan, Paul, Kukreja, Pinkerton (bib0005) 2011; 211 Liu (10.1016/j.jmatprotec.2015.11.022_bib0070) 2003; 48 Alimardani (10.1016/j.jmatprotec.2015.11.022_bib0010) 2007; 19 Zhang (10.1016/j.jmatprotec.2015.11.022_bib0105) 2014; 55 Lalas (10.1016/j.jmatprotec.2015.11.022_bib0050) 2007; 32 Lakshminarayanan (10.1016/j.jmatprotec.2015.11.022_bib0060) 2008; 14 Lampa (10.1016/j.jmatprotec.2015.11.022_bib0055) 1997; 30 Xiong (10.1016/j.jmatprotec.2015.11.022_bib0100) 2013; 29 Jhavar (10.1016/j.jmatprotec.2015.11.022_bib0045) 2014; 29 Pinkerton (10.1016/j.jmatprotec.2015.11.022_bib0080) 2004; 37 Toyserkani (10.1016/j.jmatprotec.2015.11.022_bib0090) 2003; 15 Cao (10.1016/j.jmatprotec.2015.11.022_bib0020) 2011; 27 Incropera (10.1016/j.jmatprotec.2015.11.022_bib0035) 2007 Ahsan (10.1016/j.jmatprotec.2015.11.022_bib0005) 2011; 211 Cheikh (10.1016/j.jmatprotec.2015.11.022_bib0025) 2012; 212 Liu (10.1016/j.jmatprotec.2015.11.022_bib0065) 2006; 8 Jhavar (10.1016/j.jmatprotec.2015.11.022_bib0040) 2014; 214 Baufeld (10.1016/j.jmatprotec.2015.11.022_bib0015) 2011; 211 Vilar (10.1016/j.jmatprotec.2015.11.022_bib0095) 1999; 11 10.1016/j.jmatprotec.2015.11.022_bib0075 Suryakumar (10.1016/j.jmatprotec.2015.11.022_bib0085) 2011; 43 Hua (10.1016/j.jmatprotec.2015.11.022_bib0030) 2008; 198 |
References_xml | – volume: 30 start-page: 1293 year: 1997 end-page: 1299 ident: bib0055 article-title: An analytical thermodynamic model of laser welding publication-title: J. Phys. D: Appl. Phys. contributor: fullname: Magnusson – volume: 43 start-page: 331 year: 2011 end-page: 344 ident: bib0085 article-title: Weld bead modeling and process optimization in hybrid layered manufacturing publication-title: Comput. Aided Des. contributor: fullname: Sharma – volume: 15 start-page: 153 year: 2003 end-page: 160 ident: bib0090 article-title: Three-dimensional finite element modeling of laser cladding by powder injection: effects of powder feed rate and travel speed on the process publication-title: J. Laser Appl. contributor: fullname: Corbin – volume: 29 start-page: 1017 year: 2014 end-page: 1023 ident: bib0045 article-title: Enhancement of deposition quality in micro-plasma transferred arc deposition process publication-title: Mater. Manuf. Processes contributor: fullname: Paul – volume: 29 start-page: 417 year: 2013 end-page: 423 ident: bib0100 article-title: Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing publication-title: Robot. Comput. Integr. Manuf. contributor: fullname: Wu – year: 2007 ident: bib0035 article-title: Fundamentals of Heat and Mass Transfer contributor: fullname: Lavine – volume: 55 start-page: 104 year: 2014 end-page: 119 ident: bib0105 article-title: Characterization of stainless steel parts by laser metal deposition shaping publication-title: Mater. Des. contributor: fullname: Shang – volume: 212 start-page: 1832 year: 2012 end-page: 1839 ident: bib0025 article-title: Prediction and analytical description of the single laser track geometry in direct laser fabrication from process parameters and energy balance reasoning publication-title: J. Mater. Process. Technol. contributor: fullname: Guillen – volume: 27 start-page: 641 year: 2011 end-page: 645 ident: bib0020 article-title: Overlapping model of beads and curve fitting of bead section for rapid manufacturing by robotic MAG welding process publication-title: Robot. Comput. Integr. Manuf. contributor: fullname: Wang – volume: 19 start-page: 14 year: 2007 end-page: 25 ident: bib0010 article-title: Three-dimensional numerical approach for geometrical prediction of multilayer laser solid freeform fabrication process publication-title: J. Laser Appl. contributor: fullname: Huissoon – volume: 198 start-page: 454 year: 2008 end-page: 462 ident: bib0030 article-title: Research on molten pool temperature in the process of laser rapid forming publication-title: J. Mater. Process. Technol. contributor: fullname: Weidong – volume: 214 start-page: 1102 year: 2014 end-page: 1110 ident: bib0040 article-title: Development of micro-plasma transferred arc (μ-PTA) wire deposition process for additive layer manufacturing applications publication-title: J. Mater. Process. Technol. contributor: fullname: Paul – volume: 211 start-page: 1146 year: 2011 end-page: 1158 ident: bib0015 article-title: Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition publication-title: J. Mater. Process. Technol. contributor: fullname: Biest – volume: 14 start-page: 779 year: 2008 end-page: 789 ident: bib0060 article-title: Predicting the dilution of plasma transferred arc hardfacing of satellite on carbon steel using response surface methodology publication-title: Metals Mater. Int. contributor: fullname: Babu – volume: 11 start-page: 64 year: 1999 end-page: 79 ident: bib0095 article-title: Laser cladding publication-title: J. Laser Appl. contributor: fullname: Vilar – volume: 32 start-page: 34 year: 2007 end-page: 41 ident: bib0050 article-title: An analytical model of the laser clad geometry publication-title: Int. J. Adv. Manuf. Technol. contributor: fullname: Chryssolouris – volume: 48 start-page: 1337 year: 2003 end-page: 1342 ident: bib0070 article-title: Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping publication-title: Scr. Mater. contributor: fullname: DuPont – volume: 8 start-page: 1 year: 2006 end-page: 7 ident: bib0065 article-title: Direct fabrication of thin-wall parts by laser cladding publication-title: J. Manuf. Processes contributor: fullname: Li – volume: 211 start-page: 602 year: 2011 end-page: 609 ident: bib0005 article-title: Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications; modelling and experimental investigation publication-title: J. Mater. Process. Technol. contributor: fullname: Pinkerton – volume: 37 start-page: 1885 year: 2004 end-page: 1895 ident: bib0080 article-title: Modeling the geometry of a moving laser melt pool and deposition track via energy and mass balances publication-title: J. Appl. Phys. D: Appl. Phys. contributor: fullname: Li – volume: 19 start-page: 14 issue: 1 year: 2007 ident: 10.1016/j.jmatprotec.2015.11.022_bib0010 article-title: Three-dimensional numerical approach for geometrical prediction of multilayer laser solid freeform fabrication process publication-title: J. Laser Appl. doi: 10.2351/1.2402518 contributor: fullname: Alimardani – volume: 14 start-page: 779 issue: 6 year: 2008 ident: 10.1016/j.jmatprotec.2015.11.022_bib0060 article-title: Predicting the dilution of plasma transferred arc hardfacing of satellite on carbon steel using response surface methodology publication-title: Metals Mater. Int. doi: 10.3365/met.mat.2008.12.779 contributor: fullname: Lakshminarayanan – volume: 30 start-page: 1293 year: 1997 ident: 10.1016/j.jmatprotec.2015.11.022_bib0055 article-title: An analytical thermodynamic model of laser welding publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/30/9/004 contributor: fullname: Lampa – volume: 211 start-page: 1146 year: 2011 ident: 10.1016/j.jmatprotec.2015.11.022_bib0015 article-title: Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2011.01.018 contributor: fullname: Baufeld – volume: 37 start-page: 1885 year: 2004 ident: 10.1016/j.jmatprotec.2015.11.022_bib0080 article-title: Modeling the geometry of a moving laser melt pool and deposition track via energy and mass balances publication-title: J. Appl. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/37/14/003 contributor: fullname: Pinkerton – volume: 15 start-page: 153 issue: 3 year: 2003 ident: 10.1016/j.jmatprotec.2015.11.022_bib0090 article-title: Three-dimensional finite element modeling of laser cladding by powder injection: effects of powder feed rate and travel speed on the process publication-title: J. Laser Appl. doi: 10.2351/1.1585087 contributor: fullname: Toyserkani – volume: 29 start-page: 1017 year: 2014 ident: 10.1016/j.jmatprotec.2015.11.022_bib0045 article-title: Enhancement of deposition quality in micro-plasma transferred arc deposition process publication-title: Mater. Manuf. Processes doi: 10.1080/10426914.2014.892984 contributor: fullname: Jhavar – volume: 43 start-page: 331 year: 2011 ident: 10.1016/j.jmatprotec.2015.11.022_bib0085 article-title: Weld bead modeling and process optimization in hybrid layered manufacturing publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2011.01.006 contributor: fullname: Suryakumar – volume: 198 start-page: 454 year: 2008 ident: 10.1016/j.jmatprotec.2015.11.022_bib0030 article-title: Research on molten pool temperature in the process of laser rapid forming publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.06.090 contributor: fullname: Hua – volume: 27 start-page: 641 year: 2011 ident: 10.1016/j.jmatprotec.2015.11.022_bib0020 article-title: Overlapping model of beads and curve fitting of bead section for rapid manufacturing by robotic MAG welding process publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2010.11.002 contributor: fullname: Cao – volume: 48 start-page: 1337 year: 2003 ident: 10.1016/j.jmatprotec.2015.11.022_bib0070 article-title: Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping publication-title: Scr. Mater. doi: 10.1016/S1359-6462(03)00020-4 contributor: fullname: Liu – volume: 214 start-page: 1102 year: 2014 ident: 10.1016/j.jmatprotec.2015.11.022_bib0040 article-title: Development of micro-plasma transferred arc (μ-PTA) wire deposition process for additive layer manufacturing applications publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2013.12.016 contributor: fullname: Jhavar – volume: 11 start-page: 64 issue: 2 year: 1999 ident: 10.1016/j.jmatprotec.2015.11.022_bib0095 article-title: Laser cladding publication-title: J. Laser Appl. doi: 10.2351/1.521888 contributor: fullname: Vilar – volume: 8 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.jmatprotec.2015.11.022_bib0065 article-title: Direct fabrication of thin-wall parts by laser cladding publication-title: J. Manuf. Processes doi: 10.1016/S1526-6125(06)70096-2 contributor: fullname: Liu – volume: 211 start-page: 602 year: 2011 ident: 10.1016/j.jmatprotec.2015.11.022_bib0005 article-title: Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications; modelling and experimental investigation publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2010.11.014 contributor: fullname: Ahsan – volume: 212 start-page: 1832 year: 2012 ident: 10.1016/j.jmatprotec.2015.11.022_bib0025 article-title: Prediction and analytical description of the single laser track geometry in direct laser fabrication from process parameters and energy balance reasoning publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2012.03.016 contributor: fullname: Cheikh – volume: 55 start-page: 104 year: 2014 ident: 10.1016/j.jmatprotec.2015.11.022_bib0105 article-title: Characterization of stainless steel parts by laser metal deposition shaping publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.09.006 contributor: fullname: Zhang – volume: 29 start-page: 417 year: 2013 ident: 10.1016/j.jmatprotec.2015.11.022_bib0100 article-title: Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2012.09.011 contributor: fullname: Xiong – year: 2007 ident: 10.1016/j.jmatprotec.2015.11.022_bib0035 contributor: fullname: Incropera – volume: 32 start-page: 34 year: 2007 ident: 10.1016/j.jmatprotec.2015.11.022_bib0050 article-title: An analytical model of the laser clad geometry publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-005-0318-0 contributor: fullname: Lalas – ident: 10.1016/j.jmatprotec.2015.11.022_bib0075 |
SSID | ssj0017088 |
Score | 2.3471987 |
Snippet | •Thermal model to predict deposition width and height in the μ-PTA deposition process.•Use of fundamental principles of energy balance and heat... Micro-plasma transferred arc ( mu -PTA) deposition process is a recently developed material and energy efficient additive layer manufacturing process for... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 121 |
SubjectTerms | Additive layer manufacturing Arc deposition Deposition Deposition geometry Mathematical models Metallic deposition Micro-plasma Process parameters Substrates Thermal analysis Thermal model Thermal properties Tracking |
Title | Thermal modeling of geometry of single-track deposition in micro-plasma transferred arc deposition process |
URI | https://dx.doi.org/10.1016/j.jmatprotec.2015.11.022 https://search.proquest.com/docview/1825483186 |
Volume | 230 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbZ7KU9lD7p9oUKvS0Olm3ZDj0tbUraQi7Zwt7M2Jaym93YIY9C_31nMnJsNl3YUnoxRpajWPNZ-jz6ZiTEB22CMgwBmVtgwYsiP_Ro3vEiGxtro7TIc_JDjqfJ5CL9PIpGvV4jdm_L_qulsQxtTZGzf2Ht_Y9iAZ6jzfGIVsfjfe2OY-0Nb3HjJM0zUy_MhhfTyTdwY7zNCopr0sE60Rb5PRYkzvOWyKcXQHtHIKM1K9KnUzx_p-qSgwvu4LVIgfk5m3q7gKwDD_7k6pqxOIUZrE7Hg72WBzitwcTgjLi-PP3eXrmEn6wHn25_1bOuw0LFHZ3Lzot2EEnD7siAanEylGZkDtySDY-tikOp3TSt-NrBDMDOiPlgjk_LqS5Iv6cHlKqVI6Bv5deeUtPUsqINlPx0eCSOAxy1dF8cn30dXXzbL0ol_m4b0_1fdcIwlgv-ub272M6teX9HZs4fi0fOWvKM4fNE9Ez1VDzs5KZ8JuYOSLIBkqytbIBE510gyRYd8qqSXSDJDpAkAqlb1QHkufjxZXT-aey5jTm8ItRq4yVGW8r8D8g-YYgEE8AHnfvK5mGEXyB5Ocx1FAKyP20hiPM0yYcJvvuxURBaHb4Q_aquzEshLY76ZWGQ9hYRMvsUihhvz1WYln4EWp8I1XRgtuT8K1kjTJxnbadn1On4OZthp5-Ij01PZ45HMj_MECT3uPt9Y5wMh1paP4PK1Nt1psibkuIkGL_6pxZeiwfte_FG9DerrXkrjtbl9p2D3G8zpqxs |
link.rule.ids | 315,782,786,27935,27936 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+modeling+of+geometry+of+single-track+deposition+in+micro-plasma+transferred+arc+deposition+process&rft.jtitle=Journal+of+materials+processing+technology&rft.au=Nikam%2C+Sagar+H.&rft.au=Jain%2C+Neelesh+K.&rft.au=Jhavar%2C+Suyog&rft.date=2016-04-01&rft.pub=Elsevier+B.V&rft.issn=0924-0136&rft.volume=230&rft.spage=121&rft.epage=130&rft_id=info:doi/10.1016%2Fj.jmatprotec.2015.11.022&rft.externalDocID=S0924013615302089 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-0136&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-0136&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-0136&client=summon |