Simulation of the conformation of the murein fabric : the oligoglycan, penta-muropeptide, and cross-linked nona-muropeptide

The structure and conformation of the sacculus of bacteria at a scale much larger than just the component disaccharide penta-muropeptide is not well known and is crucially important for the understanding of bacterial growth and cell wall function. By computer simulations, the minimal energy conforma...

Full description

Saved in:
Bibliographic Details
Published in:Archives of microbiology Vol. 174; no. 6; pp. 429 - 439
Main Author: KOCH, Arthur L
Format: Journal Article
Language:English
Published: Heidelberg Springer 01-12-2000
Berlin
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The structure and conformation of the sacculus of bacteria at a scale much larger than just the component disaccharide penta-muropeptide is not well known and is crucially important for the understanding of bacterial growth and cell wall function. By computer simulations, the minimal energy conformations and the energy needed for stretching the component parts were found. The oligosaccharide chain, modeled as (GlcNAc-MurNAc)8 when under no tension, can assumed a variety of nearly iso-energetic conformations. These included a variety of bends and kinks, with the chain forming an irregular random coil. In the most relaxed and minimal energy state, the D-lactyl groups of the MurNAc (N-acetyl muramic acid) residues protruded at about an angle of 90 degrees relative to the D-lactyl groups of their immediate MurNAc neighbors in the same chain. The cell wall penta-muropeptide precursor is identical for Escherichia coli and Bacillus subtilis; it also adopted many conformations, each of an energy almost equal to the global minimum. The cross-bridged structure of the tail-to-tail linkage of disaccharide nona-muropeptide has a second type of association, in addition to the covalent cross-bridge, which has not been considered before. This is the ionic interaction between the free D-Ala and the free amino group of the m-A2 pm. In vivo, when the cross-bridge is stretched (in the computer to simulate growth), this pairing dissociates. The possible biological significance of this is that it exposes the underlying 'tail-to-tail' peptide bond to autolysis and will expose both the ends of the m-A2 pm and the D-AlaD-Ala groups that may then be able to react with nascent penta-muropeptides to form trimers. This suggests a new model for growth of the bacterial cell wall that depends on changes in the chemical conformation of the cross-bridge structure as it comes to bear stress.
AbstractList The structure and conformation of the sacculus of bacteria at a scale much larger than just the component disaccharide penta-muropeptide is not well known and is crucially important for the understanding of bacterial growth and cell wall function. By computer simulations, the minimal energy conformations and the energy needed for stretching the component parts were found. The oligosaccharide chain, modeled as (GlcNAc-MurNAc)8 when under no tension, can assumed a variety of nearly iso-energetic conformations. These included a variety of bends and kinks, with the chain forming an irregular random coil. In the most relaxed and minimal energy state, the D-lactyl groups of the MurNAc (N-acetyl muramic acid) residues protruded at about an angle of 90 degree relative to the D-lactyl groups of their immediate MurNAc neighbors in the same chain. The cell wall penta-muropeptide precursor is identical forEscherichia coli andBacillus subtilis; it also adopted many conformations, each of an energy almost equal to the global minimum. The cross-bridged structure of the tail-to-tail linkage of disaccharide nona-muropeptide has a second type of association, in addition to the covalent cross-bridge, which has not been considered before. This is the ionic interaction between the free D-Ala and the free amino group of them-A2 pm. In vivo, when the cross-bridge is stretched (in the computer to simulate growth), this pairing dissociates. The possible biological significance of this is that it exposes the underlying 'tail-to-tail' peptide bond to autolysis and will expose both the ends of them-A2 pm and the D-Ala-D-Ala groups that may then be able to react with nascent penta-muropeptides to form trimers. This suggests a new model for growth of the bacterial cell wall that depends on changes in the chemical conformation of the cross-bridge structure as it comes to bear stress.
The structure and conformation of the sacculus of bacteria at a scale much larger than just the component disaccharide penta-muropeptide is not well known and is crucially important for the understanding of bacterial growth and cell wall function. By computer simulations, the minimal energy conformations and the energy needed for stretching the component parts were found. The oligosaccharide chain, modeled as (GlcNAc-MurNAc)8 when under no tension, can assumed a variety of nearly iso-energetic conformations. These included a variety of bends and kinks, with the chain forming an irregular random coil. In the most relaxed and minimal energy state, the D-lactyl groups of the MurNAc (N-acetyl muramic acid) residues protruded at about an angle of 90 degrees relative to the D-lactyl groups of their immediate MurNAc neighbors in the same chain. The cell wall penta-muropeptide precursor is identical for Escherichia coli and Bacillus subtilis; it also adopted many conformations, each of an energy almost equal to the global minimum. The cross-bridged structure of the tail-to-tail linkage of disaccharide nona-muropeptide has a second type of association, in addition to the covalent cross-bridge, which has not been considered before. This is the ionic interaction between the free D-Ala and the free amino group of the m-A2 pm. In vivo, when the cross-bridge is stretched (in the computer to simulate growth), this pairing dissociates. The possible biological significance of this is that it exposes the underlying 'tail-to-tail' peptide bond to autolysis and will expose both the ends of the m-A2 pm and the D-AlaD-Ala groups that may then be able to react with nascent penta-muropeptides to form trimers. This suggests a new model for growth of the bacterial cell wall that depends on changes in the chemical conformation of the cross-bridge structure as it comes to bear stress.
Author KOCH, Arthur L
Author_xml – sequence: 1
  givenname: Arthur L
  surname: KOCH
  fullname: KOCH, Arthur L
  organization: Department of Biology, Indiana University, Bloomington, IN 47405-6801, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14228827$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/11195099$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9LHDEUB_AgFt21PXotudiT074kO5vEWxF_FAQPttDbkGTeaOpMMiYzh6X_vFEXZE_m8uDx4Use3yXZDzEgIccMvjMA-SMDcBBQHudyjyzYSvAKJP-7TxZlzyulhTgky5z_ATCulDogh4wxXYPWC_L_zg9zbyYfA40dnR6Quhi6mIad3TAn9IF2xibv6NnrLvb-Pt73G2fCKR0xTKYqLI44Tr7FU2pCS12KOVe9D4_Y0vLzHfKZfOpMn_HLdh6RP5cXv8-vq5vbq1_nP28qJ2qYKgWqa7Wp15rDCjsnNNRcS1G3CiyzFtZaS4tSW-tsuXzlQCi-Ri2YsMhqcUS-veWOKT7NmKdm8Nlh35uAcc6N5DVbAxcfQibli1QFVm_w9b6EXTMmP5i0aRg0L7U0O7UU_3UbPNsB23e97aGAky0w2Zm-SyY4n9_dipfmStAz_iWW2g
CODEN AMICCW
CitedBy_id crossref_primary_10_1111_j_1574_6976_2007_00094_x
crossref_primary_10_1128_MMBR_69_4_585_607_2005
crossref_primary_10_1016_S0966_842X_02_02440_X
crossref_primary_10_1128_JB_185_7_2178_2186_2003
crossref_primary_10_1021_acs_chemrev_8b00277
crossref_primary_10_1093_femsre_fuz016
crossref_primary_10_1073_pnas_0805309105
crossref_primary_10_1128_JB_185_11_3458_3468_2003
crossref_primary_10_1073_pnas_0803039105
crossref_primary_10_1021_acs_jctc_0c00539
crossref_primary_10_1046_j_1365_2958_2003_03607_x
crossref_primary_10_1007_s12275_008_0256_2
crossref_primary_10_1073_pnas_0510182103
crossref_primary_10_1038_s41598_017_13421_0
crossref_primary_10_1016_j_tim_2005_10_001
crossref_primary_10_1016_j_tim_2009_12_004
crossref_primary_10_1111_j_1365_2958_2010_07223_x
crossref_primary_10_1128_CMR_16_4_673_687_2003
crossref_primary_10_1006_jtbi_2000_2039
crossref_primary_10_1111_j_1574_695X_2005_00032_x
crossref_primary_10_1007_s00284_005_4548_z
crossref_primary_10_1128_MMBR_00028_07
crossref_primary_10_1016_j_carres_2014_02_002
ContentType Journal Article
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
C1K
7X8
DOI 10.1007/s002030000227
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Bacteriology Abstracts (Microbiology B)
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
Botany
EISSN 1432-072X
EndPage 439
ExternalDocumentID 10_1007_s002030000227
11195099
14228827
Genre Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3O-
3SX
3V.
4.4
406
408
409
40D
40E
4P2
53G
5QI
5VS
67N
67Z
6J9
6NX
78A
7X7
88A
88E
8CJ
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIHN
ACIPQ
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPRK
ACREN
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOAH
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETEA
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AOSHJ
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EDH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
ESTFP
F5P
FA8
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HZ~
I09
IHE
IJ-
IKXTQ
IQODW
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
MM.
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
OVD
P0-
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WIP
WJK
WK6
WK8
XFK
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z86
Z87
Z8O
Z8P
Z8Q
Z8S
Z91
ZMTXR
ZOVNA
ZXP
~02
~EX
~KM
AACDK
AAEOY
AAHBH
AAJBT
AAQLM
AASML
AAYZH
ABAKF
ABJNI
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
CGR
CUY
CVF
ECM
EIF
HMCUK
HVGLF
NPM
AAYXX
CITATION
7QL
C1K
7X8
ID FETCH-LOGICAL-c350t-808fd9a569204efc390529735d80b1bb06997be79bbcb0724c03826e9313be153
ISSN 0302-8933
IngestDate Fri Oct 25 03:09:50 EDT 2024
Fri Oct 25 04:42:18 EDT 2024
Fri Nov 22 00:41:58 EST 2024
Wed Oct 16 00:53:22 EDT 2024
Sun Oct 22 16:08:30 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Peptidoglycan
Molecular structure
Rod
Bacteria
Nonapeptide
Modeling
Cell wall
Pentapeptide
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c350t-808fd9a569204efc390529735d80b1bb06997be79bbcb0724c03826e9313be153
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 11195099
PQID 17751608
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_72516023
proquest_miscellaneous_17751608
crossref_primary_10_1007_s002030000227
pubmed_primary_11195099
pascalfrancis_primary_14228827
PublicationCentury 2000
PublicationDate 2000-12-01
PublicationDateYYYYMMDD 2000-12-01
PublicationDate_xml – month: 12
  year: 2000
  text: 2000-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Heidelberg
Berlin
PublicationPlace_xml – name: Berlin
– name: Heidelberg
– name: Germany
PublicationTitle Archives of microbiology
PublicationTitleAlternate Arch Microbiol
PublicationYear 2000
Publisher Springer
Publisher_xml – name: Springer
SSID ssj0012888
Score 1.7625717
Snippet The structure and conformation of the sacculus of bacteria at a scale much larger than just the component disaccharide penta-muropeptide is not well known and...
SourceID proquest
crossref
pubmed
pascalfrancis
SourceType Aggregation Database
Index Database
StartPage 429
SubjectTerms Bacillus subtilis
Bacillus subtilis - chemistry
Bacillus subtilis - growth & development
Bacillus subtilis - ultrastructure
Bacteriology
Biogenesis of cell structures, supramolecular organization
Biological and medical sciences
Carbohydrate Conformation
Cell Membrane - chemistry
Cell Wall - chemistry
Cell Wall - ultrastructure
Chemical Phenomena
Chemistry, Physical
Computer Simulation
Escherichia coli
Escherichia coli - chemistry
Escherichia coli - growth & development
Escherichia coli - ultrastructure
Fundamental and applied biological sciences. Psychology
Microbiology
Models, Molecular
murein
muropeptides
oligoglycan
penta-muropeptide
Peptidoglycan - chemistry
Polysaccharides - chemistry
Protein Conformation
sacculus
Thermodynamics
Title Simulation of the conformation of the murein fabric : the oligoglycan, penta-muropeptide, and cross-linked nona-muropeptide
URI https://www.ncbi.nlm.nih.gov/pubmed/11195099
https://search.proquest.com/docview/17751608
https://search.proquest.com/docview/72516023
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9swELYKbGLSNG1sYx0b88O0JyI5dhrbe-sgqJoq9kCReIvixEGVKKkofYBfzzm2EzOEtj3sJYpOrhvl-3I-3_nuEPoqSsoKSmSk4pJHiRRVBGYEjYrSBOWISlhpIrqTU35yLo6yJBsMvMOtl_1XpEEGWJvM2X9Au5sUBHAPmMMVUIfrX-F-Ol-4jlw-_A873i5F0csW62s9N-4NBXrQn-1oLucXzcXlbWmdoktzrDxatO56UCy2Pm-bBmdW1siEfs3ZATDlw0GhtRuWtV3M-5JPnZZvbCOqsct98N6H8CSHy7oyGlXaYhadRrWNdxx1Qv2YOPeGXWoTW8fokRa3BzdWbZSUtCV6eL9c-RD9ya_8-Gw6zWfZ-WwDbVFQNKDntsbZz8m0iyNR0XYe7Z7SVVltkyfD6R9YJS-XxQo-kNp2Nnl669GaILPX6JXbO-CxBf0NGuirHfTcdhO93UHPfjRg6cPN9qHv4vcW3fV8wE2NAWYc8sHLLB-w5cP3VhSw4QA_4sIBBibgkAn4dya8Q2fH2exwErl-G1HJRuQGjBVRV7IYpZKSRNclkyYMzNmoEkTFSpFUSq40l0qVinCalITB7lRLFjOlYel8jzbhr_QHhCUhRUVga6FFmsA0okhYJVMlVcwEr8UQffPvO1_asip5V0A7BGaI9h-g0Y82teuEGfDFw5PDqzXhruJKN-tVHnM-ilMinh7BqRlA2RDtWlz72dv2yFJ-_ONv99CL_rv4hDZvrtf6M9pYVet9R8Z7KGiUWA
link.rule.ids 315,782,786,27933,27934
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+the+conformation+of+the+murein+fabric%3A+the+oligoglycan%2C+penta-muropeptide%2C+and+cross-linked+nona-muropeptide&rft.jtitle=Archives+of+microbiology&rft.au=Koch%2C+A+L&rft.date=2000-12-01&rft.issn=0302-8933&rft.volume=174&rft.issue=6&rft.spage=429&rft.epage=439&rft_id=info:doi/10.1007%2Fs002030000227&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-8933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-8933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-8933&client=summon