Ca2+ Signaling and Proliferation via Ca2+-Sensing Receptors in Human Hepatic Stellate LX-2 Cells
Hepatic stellate cells (HSCs) play a significant role in the development of chronic liver diseases. Hepatic damage activates HSCs and results in hepatic fibrosis. The functions of activated HSCs require an increase in the cytosolic Ca2+ concentration ([Ca2+]cyt). However, the regulatory mechanisms u...
Saved in:
Published in: | Biological & pharmaceutical bulletin Vol. 45; no. 5; pp. 664 - 667 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Tokyo
The Pharmaceutical Society of Japan
01-05-2022
Japan Science and Technology Agency |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hepatic stellate cells (HSCs) play a significant role in the development of chronic liver diseases. Hepatic damage activates HSCs and results in hepatic fibrosis. The functions of activated HSCs require an increase in the cytosolic Ca2+ concentration ([Ca2+]cyt). However, the regulatory mechanisms underlying Ca2+ signaling in activated HSCs remain largely unknown. In the present study, functional analyses of Ca2+-sensing receptors (CaSRs) were performed using activated human HSCs, LX-2. Expression analyses revealed that CaSR proteins were expressed in α-smooth muscle actin-positive LX-2 cells. Extracellular Ca2+ restoration (from 0 to 2.2 mM) increased [Ca2+]cyt in these cells. The extracellular Ca2+-induced increase in [Ca2+]cyt was reduced by the CaSR antagonists, NPS2143 and Calhex 231. Furthermore, the growth of LX-2 cells was blocked by NPS2143 and Calhex 231 in concentration-dependent manners (IC50 = 6.0 and 9.5 μM, respectively). LX-2 cell proliferation was also attenuated by NPS2143 and Calhex 231. In conclusion, CaSRs are functionally expressed in activated HSCs and regulate Ca2+ signaling and cell proliferation. The present results provide insights into the molecular mechanisms underlying hepatic fibrosis and will contribute to the development of potential therapeutic targets. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0918-6158 1347-5215 |
DOI: | 10.1248/bpb.b22-00103 |