Identification of Bioactive Compounds against Aedes aegypti (Diptera: Culicidae) by Bioassays and in Silico Assays

Most of the hematophagous insects act as disease vectors, including Aedes aegypti, responsible for transmitting some of the most critical arboviruses globally, such as Dengue. The use of repellents based on natural products is a promising alternative for personal protection compared to industrial ch...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry & biodiversity Vol. 18; no. 9; pp. e2100242 - n/a
Main Authors: Brito, Geisiane Amorim, Rocha de Oliveira, Paulo Fernando, Andrade Silva, Caliene Melo, Araújo Neto, Moysés Fagundes, Leite, Franco Henrique Andrade, Mesquita, Paulo Roberto Ribeiro, Mota, Tiago Feitosa, Magalhães‐Junior, Jairo Torres
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01-09-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Most of the hematophagous insects act as disease vectors, including Aedes aegypti, responsible for transmitting some of the most critical arboviruses globally, such as Dengue. The use of repellents based on natural products is a promising alternative for personal protection compared to industrial chemical repellents. In this study, the repellent effect of essential oils extracted from Lippia thymoides, Lippia alba, Cymbopogon winterianus, and Eucalyptus globulus leaves was evaluated. Essential oils used showed repellent activity against Ae. aegypti in laboratory bioassays, obtaining protection rates above 70 % from 3.75 mg/mL and higher concentration for all analyzed oils. GC/MS identified 57 constituents, which were used in the ligand‐based pharmacophore model to expose compounds with requirements for repellents that modulate mosquitoes behavior through odorant‐binding protein 1 Ae. aegypti. Ligand‐based pharmacophore model approach results suggested that repellent activity from C. winterianus, L. alba, and L. thymoides essential oils’ metabolites is related to Citronelal (QFIT=26.77), Citronelol (QFIT=11.29), Citronelol acetate (QFIT=52.22) and Geranil acetate (QFIT=10.28) with synergistic or individual activity. E. globulus essential oil's repellent activity is associated with Ledol (0.94 %; QFIT=41.95). Molecular docking was applied to understand the binding mode and affinity of the essential oils’ data set at the protein binding site. According to molecular docking, Citronelol (ChemPLP=60.98) and geranyl acetate (ChemPLP=60.55) were the best‐classified compounds compared to the others and they can be explored to develop new repellents.
AbstractList Most of the hematophagous insects act as disease vectors, including Aedes aegypti , responsible for transmitting some of the most critical arboviruses globally, such as Dengue. The use of repellents based on natural products is a promising alternative for personal protection compared to industrial chemical repellents. In this study, the repellent effect of essential oils extracted from Lippia thymoides , Lippia alba , Cymbopogon winterianus , and Eucalyptus globulus leaves was evaluated. Essential oils used showed repellent activity against Ae. aegypti in laboratory bioassays, obtaining protection rates above 70 % from 3.75 mg/mL and higher concentration for all analyzed oils. GC/MS identified 57 constituents, which were used in the ligand‐based pharmacophore model to expose compounds with requirements for repellents that modulate mosquitoes behavior through odorant‐binding protein 1 Ae. aegypti . Ligand‐based pharmacophore model approach results suggested that repellent activity from C. winterianus , L. alba , and L. thymoides essential oils’ metabolites is related to Citronelal (QFIT=26.77), Citronelol (QFIT=11.29), Citronelol acetate (QFIT=52.22) and Geranil acetate (QFIT=10.28) with synergistic or individual activity. E. globulus essential oil's repellent activity is associated with Ledol (0.94 %; QFIT=41.95). Molecular docking was applied to understand the binding mode and affinity of the essential oils’ data set at the protein binding site. According to molecular docking, Citronelol (ChemPLP=60.98) and geranyl acetate (ChemPLP=60.55) were the best‐classified compounds compared to the others and they can be explored to develop new repellents.
Most of the hematophagous insects act as disease vectors, including Aedes aegypti, responsible for transmitting some of the most critical arboviruses globally, such as Dengue. The use of repellents based on natural products is a promising alternative for personal protection compared to industrial chemical repellents. In this study, the repellent effect of essential oils extracted from Lippia thymoides, Lippia alba, Cymbopogon winterianus, and Eucalyptus globulus leaves was evaluated. Essential oils used showed repellent activity against Ae. aegypti in laboratory bioassays, obtaining protection rates above 70 % from 3.75 mg/mL and higher concentration for all analyzed oils. GC/MS identified 57 constituents, which were used in the ligand‐based pharmacophore model to expose compounds with requirements for repellents that modulate mosquitoes behavior through odorant‐binding protein 1 Ae. aegypti. Ligand‐based pharmacophore model approach results suggested that repellent activity from C. winterianus, L. alba, and L. thymoides essential oils’ metabolites is related to Citronelal (QFIT=26.77), Citronelol (QFIT=11.29), Citronelol acetate (QFIT=52.22) and Geranil acetate (QFIT=10.28) with synergistic or individual activity. E. globulus essential oil's repellent activity is associated with Ledol (0.94 %; QFIT=41.95). Molecular docking was applied to understand the binding mode and affinity of the essential oils’ data set at the protein binding site. According to molecular docking, Citronelol (ChemPLP=60.98) and geranyl acetate (ChemPLP=60.55) were the best‐classified compounds compared to the others and they can be explored to develop new repellents.
Author Andrade Silva, Caliene Melo
Araújo Neto, Moysés Fagundes
Brito, Geisiane Amorim
Mesquita, Paulo Roberto Ribeiro
Rocha de Oliveira, Paulo Fernando
Leite, Franco Henrique Andrade
Magalhães‐Junior, Jairo Torres
Mota, Tiago Feitosa
Author_xml – sequence: 1
  givenname: Geisiane Amorim
  surname: Brito
  fullname: Brito, Geisiane Amorim
  organization: Universidade Federal do Oeste da Bahia
– sequence: 2
  givenname: Paulo Fernando
  surname: Rocha de Oliveira
  fullname: Rocha de Oliveira, Paulo Fernando
  organization: Universidade Federal do Oeste da Bahia
– sequence: 3
  givenname: Caliene Melo
  surname: Andrade Silva
  fullname: Andrade Silva, Caliene Melo
  organization: Universidade Federal do Oeste da Bahia
– sequence: 4
  givenname: Moysés Fagundes
  surname: Araújo Neto
  fullname: Araújo Neto, Moysés Fagundes
  organization: Universidade Estadual de Feira de Santana
– sequence: 5
  givenname: Franco Henrique Andrade
  surname: Leite
  fullname: Leite, Franco Henrique Andrade
  organization: Universidade Estadual de Feira de Santana
– sequence: 6
  givenname: Paulo Roberto Ribeiro
  surname: Mesquita
  fullname: Mesquita, Paulo Roberto Ribeiro
  organization: Faculdade Maria Milza
– sequence: 7
  givenname: Tiago Feitosa
  surname: Mota
  fullname: Mota, Tiago Feitosa
  organization: Instituto Gonçalo Moniz – FIOCRUZ
– sequence: 8
  givenname: Jairo Torres
  surname: Magalhães‐Junior
  fullname: Magalhães‐Junior, Jairo Torres
  email: jairo.magalhaes@ufob.edu.br
  organization: Universidade Federal do Oeste da Bahia
BookMark eNqFkTtPwzAQxy1UJKCwMltigSHFdhInYSspj0pIDDzWyLHPyCi1Q5wU5dvjUlQkFqZ7_f53p7sjNLHOAkKnlMwoIexS1mo9Y4RtgoTtoUPKKYtonpPJzs_YATry_j0gIZ8fom6pwPZGGyl64yx2Gl8bJ2Rv1oBLt2rdYJXH4k0Y63s8BwUhgrex7Q0-X5i2h05c4XJojDRKwAWux-8O3osxkFZhY_GTCWWH59_JY7SvRePh5MdO0cvtzXN5Hz083i3L-UMk45SwSGkOKo5rrpTOAXQqWV2TQqYik1xluYhjmkjBOFVEqzgpONVC8ZzXQhRpIeMpOt_2bTv3MYDvq5XxEppGWHCDr1gaxqRFkfCAnv1B393Q2bBdoDJakJRkaaBmW0p2zvsOdNV2ZiW6saKk2ly92ryg2r0gCIqt4NM0MP5DV-X14vVX-wVVyo0m
CitedBy_id crossref_primary_10_1080_03235408_2022_2048557
crossref_primary_10_3390_insects15060402
crossref_primary_10_1007_s43621_023_00150_w
crossref_primary_10_3389_fsufs_2024_1329100
crossref_primary_10_1016_j_pestbp_2023_105538
crossref_primary_10_1038_s41598_024_52801_1
crossref_primary_10_1016_j_actatropica_2022_106367
crossref_primary_10_1080_08927022_2022_2159054
crossref_primary_10_1016_j_cropro_2023_106319
crossref_primary_10_1016_j_heliyon_2024_e29063
Cites_doi 10.1186/s13071-015-0934-y
10.1080/07391102.2019.1688192
10.3390/insects11030198
10.2987/16-6585.1
10.1007/s10886-011-9922-7
10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W
10.1590/S1516-05722010000200014
10.1002/cbdv.201900580
10.1080/07391102.2020.1796791
10.3109/13880209.2010.523427
10.1186/s12906-018-2085-0
10.1093/jme/tjw222
10.2987/8756-971X(2006)22[507:PARBMR]2.0.CO;2
10.1080/07391102.2020.1808074
10.1016/j.biortech.2009.07.048
10.4269/ajtmh.1999.60.654
10.1021/acsomega.8b01597
10.1155/2020/9053741
10.1002/cbdv.201400137
10.5123/S1679-49742016000200017
10.1007/s00018-016-2335-6
10.1016/j.jep.2019.112162
10.1242/jeb.176909
10.1044/leader.RIB3.20032015.15
10.1016/j.cois.2014.10.007
10.1002/jcc.540100804
10.1371/journal.pone.0116765
10.4102/jsava.v85i1.992
10.1590/2236-8906-68/2016
10.1016/j.actatropica.2016.12.031
10.1056/NEJMoa011699
10.1371/journal.pone.0064547
10.1007/s00436-014-3917-6
10.3109/13880209.2013.789536
10.3390/molecules25051245
10.3390/molecules24081476
10.7554/eLife.08347
ContentType Journal Article
Copyright 2021 Wiley‐VHCA AG, Zurich, Switzerland
Copyright_xml – notice: 2021 Wiley‐VHCA AG, Zurich, Switzerland
DBID AAYXX
CITATION
7QO
7TM
8FD
FR3
K9.
M7N
P64
7X8
DOI 10.1002/cbdv.202100242
DatabaseName CrossRef
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

Biotechnology Research Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1612-1880
EndPage n/a
ExternalDocumentID 10_1002_cbdv_202100242
CBDV202100242
Genre article
GrantInformation_xml – fundername: Centro Multidisciplinar of Universidade Federal do Oeste da Bahia
– fundername: Laboratório de Modelagem Molecular at Universidade Estadual de Feira de Santana
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMNL
AAYXX
CITATION
7QO
7TM
8FD
FR3
K9.
M7N
P64
7X8
ID FETCH-LOGICAL-c3502-df6ed33b6ddf8eef5c2bb09c5a7c6d78a3314ca261d0fd34961fad686baa959c3
IEDL.DBID 33P
ISSN 1612-1872
IngestDate Fri Aug 16 22:12:48 EDT 2024
Thu Oct 10 14:53:07 EDT 2024
Thu Nov 21 21:19:47 EST 2024
Sat Aug 24 01:00:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3502-df6ed33b6ddf8eef5c2bb09c5a7c6d78a3314ca261d0fd34961fad686baa959c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2571905075
PQPubID 986337
PageCount 13
ParticipantIDs proquest_miscellaneous_2550259946
proquest_journals_2571905075
crossref_primary_10_1002_cbdv_202100242
wiley_primary_10_1002_cbdv_202100242_CBDV202100242
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Chemistry & biodiversity
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2018; 221
2019; 9
1996; 17
2015; 4
2017; 44
2010; 101
2015; 10
2020; 17
2020; 38
2020; 11
2020; 246
2011; 37
2013; 7
2014; 85
1999; 60
2013; 8
2015; 8
2014; 113
2018; 18
2017; 74
2018; 3
2020; 1
1989; 10
2006; 22
2020
2013; 51
2017; 33
2019; 24
2017; 54
2019
2002; 347
2020; 25
2017; 167
2011; 49
2014; 6
2016; 25
2014; 11
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
Wu H. (e_1_2_7_30_1) 2019
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Kaura T. (e_1_2_7_23_1) 2019; 9
Gusmão N. M. S. (e_1_2_7_16_1) 2013; 7
References_xml – volume: 6
  start-page: 93
  year: 2014
  end-page: 98
  article-title: The enigmatic reception of DEET – the gold standard of insect repellents’
  publication-title: Curr. Opin. Insect Sci.
– volume: 25
  start-page: 1245
  year: 2020
  article-title: Identification of Novel Chemical Entities for Adenosine Receptor Type 2 A Using Molecular Modeling Approaches’
  publication-title: Molecules
– volume: 113
  start-page: 2647
  year: 2014
  end-page: 2654
  article-title: Essential oils with insecticidal activity against larvae of (Diptera: Culicidae)’
  publication-title: Parasitol. Res.
– volume: 167
  start-page: 216
  year: 2017
  end-page: 230
  article-title: Mosquito repellents: An insight into the chronological perspectives and novel discoveries’
  publication-title: Acta Trop.
– volume: 7
  year: 2013
  article-title: Contact and fumigant toxicity and repellency of Eucalyptus citriodora Hook., Eucalyptus staigeriana F., Cymbopogon winterianus Jowitt and Foeniculum vulgare Mill. essential oils in the management of Callosobruchus maculatus (FABR.) (Coleoptera: Chrysomelidae, Bruchinae)’
  publication-title: J. Stored Prod. Res.
– volume: 37
  start-page: 348
  year: 2011
  end-page: 59
  article-title: Anointing Chemicals and Hematophagous Arthropods: Responses by Ticks and Mosquitoes to Citrus (Rutaceae) Peel Exudates and Monoterpene Components’
  publication-title: J. Chem. Ecol.
– volume: 24
  start-page: 1476
  year: 2019
  article-title: In Silico Evaluation of Ibuprofen and Two Benzoylpropionic Acid Derivatives with Potential Anti-Inflammatory Activity’
  publication-title: Molecules
– start-page: 1
  year: 2020
  end-page: 13
  article-title: Identification of novel odorant-binding protein 1 modulators by ligand and structure-based approaches and bioassays’
  publication-title: J. Biomol. Struct. Dyn.
– volume: 51
  start-page: 1293
  year: 2013
  end-page: 1297
  article-title: Molluscicidal and larvicidal activities and essential oil composition of ’
  publication-title: Pharm. Biol.
– volume: 33
  start-page: 25
  year: 2017
  end-page: 35
  article-title: Insecticidal and Repellent Activity of Several Plant-Derived Essential Oils Against ’
  publication-title: J. Am. Mosq. Control Assoc.
– year: 2019
  article-title: Essential Oil Extracted from Cymbopogon citronella Leaves by Supercritical Carbon Dioxide: Antioxidant and Antimicrobial Activities’
  publication-title: J. Anal. Methods Chem.
– volume: 17
  start-page: 33
  year: 1996
  article-title: Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions’
  publication-title: J. Comput. Chem.
– volume: 9
  start-page: 12
  year: 2019
  end-page: 17
  article-title: Utilizing larvicidal and pupicidal efficacy of Eucalyptus and neem oil against Aedes mosquito: An approach for mosquito control’
  publication-title: Trop. Parasitol.
– volume: 60
  start-page: 654
  year: 1999
  end-page: 657
  article-title: Gender-related efficacy difference to an extended duration formulation of topical N,N-diethyl-m-toluamide (DEET).’
  publication-title: Am. J. Trop. Med. Hyg.
– volume: 347
  start-page: 13
  year: 2002
  end-page: 18
  article-title: Comparative Efficacy of Insect Repellents against Mosquito Bites’
  publication-title: N. Engl. J. Med.
– volume: 12
  start-page: 215
  year: 2010
  end-page: 219
  article-title: Avaliação preliminar de óleos essenciais de plantas como repelentes para Aedes albopictus (Skuse, 1894) (Diptera: Culicidae)’
  publication-title: Rev. Bras. Plant. Med.
– volume: 49
  start-page: 456
  year: 2011
  end-page: 63
  article-title: Chemical Composition and Mosquito Larvicidal Activities of Salvia Essential Oils’
  publication-title: Pharm. Biol.
– volume: 10
  year: 2015
  article-title: Insecticidal and Repellent Activity of Siparuna guianensis Aubl. (Negramina) against and Culex quinquefasciatus’
  publication-title: PLoS One
– volume: 17
  start-page: 10
  year: 2020
  article-title: Repellent, Insecticidal and Antimicrobial Activities of Leaf Essential Oils from Three Species’
  publication-title: Chem. Biodiversity
– volume: 101
  start-page: 372
  year: 2010
  end-page: 378
  article-title: Repellent activity of essential oils: A review’
  publication-title: Bioresour. Technol.
– volume: 74
  start-page: 319
  year: 2017
  end-page: 338
  article-title: The crystal structure of the AgamOBP1⋅Icaridin complex reveals alternative binding modes and stereo-selective repellent recognition’
  publication-title: Cell. Mol. Life Sci.
– volume: 3
  start-page: 15657
  year: 2018
  end-page: 15665
  article-title: Evaluation of the Leaf Essential Oil from Artemisia vulgaris and Its Larvicidal and Repellent Activity against Dengue Fever Vector – An Experimental and Molecular Docking Investigation’
  publication-title: ACS Omega
– volume: 38
  start-page: 4687
  year: 2020
  end-page: 4709
  article-title: Potential inhibitors of the enzyme acetylcholinesterase and juvenile hormone with insecticidal activity: study of the binding mode via docking and molecular dynamics simulations’
  publication-title: J. Biomol. Struct. Dyn.
– volume: 10
  start-page: 982
  year: 1989
  end-page: 1012
  article-title: Validation of the general purpose tripos 5.2 force field’
  publication-title: J. Comput. Chem.
– volume: 54
  start-page: 670
  year: 2017
  end-page: 676
  article-title: Repellent and Larvicidal Activity of the Essential Oil From Eucalyptus nitens Against and Aedes albopictus (Diptera: Culicidae)’
  publication-title: J. Med. Entomol.
– volume: 4
  year: 2015
  article-title: The global distribution of the arbovirus vectors and ’
  publication-title: eLife
– volume: 11
  start-page: 198
  year: 2020
  article-title: Larvicidal and Repellent Activity of Mentha arvensis L. Essential Oil against ’
  publication-title: Insects
– volume: 11
  start-page: 1449
  year: 2014
  end-page: 1456
  article-title: Chemical Constituents and Activities of the Essential Oil from against Cigarette Beetle ’
  publication-title: Chem. Biodiversity
– volume: 1
  start-page: 1
  year: 2020
  end-page: 5
  article-title: The Mosquito Repellent Activity of the Active Component of Air Freshener Gel from Java Citronella Oil (Cymbopogon winterianus)’
  publication-title: J. Parasitol. Res.
– volume: 8
  start-page: 316
  year: 2015
  article-title: Electrophysiological and behavioral characterization of bioactive compounds of the Thymus vulgaris, Cymbopogon winterianus, Cuminum cyminum and Cinnamomum zeylanicum essential oils against Anopheles gambiae and prospects for their use as bednet treatments’
  publication-title: Parasit. Vectors
– volume: 85
  start-page: 5
  year: 2014
  article-title: Assessment of the repellent effect of citronella and lemon eucalyptus oil against South African species’
  publication-title: J. S. Afr. Vet. Assoc.
– volume: 18
  start-page: 1
  year: 2018
  end-page: 7
  article-title: Bioactivity of Essential Oils Extracted from Cupressus Macrocarpa Branchlets and Corymbia Citriodora Leaves Grown in Egypt’
  publication-title: BMC Complementary Altern. Med.
– volume: 25
  start-page: 1
  year: 2016
  end-page: 2
  article-title: Estratégias de controle do : uma revisão’
  publication-title: Epidemiol. E Serviços Saúde
– volume: 8
  year: 2013
  article-title: Promising Repellent Chemotypes Identified through Integrated QSAR, Virtual Screening, Synthesis, and Bioassay’
  publication-title: PLoS One
– volume: 22
  start-page: 507
  year: 2006
  end-page: 514
  article-title: PMD, a Registered Botanical Mosquito Repellent with Deet-Like Efficacy’
  publication-title: J. Am. Mosq. Control Assoc.
– volume: 246
  year: 2020
  article-title: Lippia alnifolia essential oil induces relaxation on Guinea-pig trachea by multiple pathways’
  publication-title: J. Ethnopharmacol.
– start-page: 1
  year: 2020
  end-page: 10
  article-title: Pharmacophore-based virtual screening and molecular docking to identify promising dual inhibitors of human acetylcholinesterase and butyrylcholinesterase’
  publication-title: J. Biomol. Struct. Dyn.
– volume: 221
  year: 2018
  article-title: The essential oil of and its components affect behavior and synaptic physiology’
  publication-title: J. Exp. Biol.
– volume: 44
  start-page: 158
  year: 2017
  end-page: 171
  article-title: Atividade antimicrobiana e potencial terapêutico do gênero Lippia sensu lato (Verbenaceae)’
  publication-title: Hoehnea
– ident: e_1_2_7_7_1
  doi: 10.1186/s13071-015-0934-y
– ident: e_1_2_7_32_1
  doi: 10.1080/07391102.2019.1688192
– ident: e_1_2_7_11_1
  doi: 10.3390/insects11030198
– ident: e_1_2_7_21_1
  doi: 10.2987/16-6585.1
– ident: e_1_2_7_36_1
  doi: 10.1007/s10886-011-9922-7
– ident: e_1_2_7_43_1
  doi: 10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W
– volume: 7
  year: 2013
  ident: e_1_2_7_16_1
  article-title: Contact and fumigant toxicity and repellency of Eucalyptus citriodora Hook., Eucalyptus staigeriana F., Cymbopogon winterianus Jowitt and Foeniculum vulgare Mill. essential oils in the management of Callosobruchus maculatus (FABR.) (Coleoptera: Chrysomelidae, Bruchinae)’
  publication-title: J. Stored Prod. Res.
  contributor:
    fullname: Gusmão N. M. S.
– ident: e_1_2_7_22_1
  doi: 10.1590/S1516-05722010000200014
– ident: e_1_2_7_6_1
  doi: 10.1002/cbdv.201900580
– ident: e_1_2_7_25_1
– ident: e_1_2_7_31_1
  doi: 10.1080/07391102.2020.1796791
– ident: e_1_2_7_37_1
  doi: 10.3109/13880209.2010.523427
– ident: e_1_2_7_34_1
  doi: 10.1186/s12906-018-2085-0
– ident: e_1_2_7_38_1
  doi: 10.1093/jme/tjw222
– ident: e_1_2_7_10_1
  doi: 10.2987/8756-971X(2006)22[507:PARBMR]2.0.CO;2
– ident: e_1_2_7_13_1
  doi: 10.1080/07391102.2020.1808074
– ident: e_1_2_7_9_1
  doi: 10.1016/j.biortech.2009.07.048
– ident: e_1_2_7_28_1
  doi: 10.4269/ajtmh.1999.60.654
– ident: e_1_2_7_8_1
  doi: 10.1021/acsomega.8b01597
– ident: e_1_2_7_35_1
  doi: 10.1155/2020/9053741
– ident: e_1_2_7_15_1
  doi: 10.1002/cbdv.201400137
– ident: e_1_2_7_39_1
– ident: e_1_2_7_3_1
  doi: 10.5123/S1679-49742016000200017
– ident: e_1_2_7_12_1
  doi: 10.1007/s00018-016-2335-6
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jep.2019.112162
– ident: e_1_2_7_41_1
– ident: e_1_2_7_14_1
  doi: 10.1242/jeb.176909
– volume: 9
  start-page: 12
  year: 2019
  ident: e_1_2_7_23_1
  article-title: Utilizing larvicidal and pupicidal efficacy of Eucalyptus and neem oil against Aedes mosquito: An approach for mosquito control’
  publication-title: Trop. Parasitol.
  contributor:
    fullname: Kaura T.
– ident: e_1_2_7_40_1
  doi: 10.1044/leader.RIB3.20032015.15
– ident: e_1_2_7_27_1
– ident: e_1_2_7_4_1
  doi: 10.1016/j.cois.2014.10.007
– start-page: 8192439
  year: 2019
  ident: e_1_2_7_30_1
  article-title: Essential Oil Extracted from Cymbopogon citronella Leaves by Supercritical Carbon Dioxide: Antioxidant and Antimicrobial Activities’
  publication-title: J. Anal. Methods Chem.
  contributor:
    fullname: Wu H.
– ident: e_1_2_7_42_1
  doi: 10.1002/jcc.540100804
– ident: e_1_2_7_2_1
  doi: 10.1371/journal.pone.0116765
– ident: e_1_2_7_24_1
  doi: 10.4102/jsava.v85i1.992
– ident: e_1_2_7_19_1
  doi: 10.1590/2236-8906-68/2016
– ident: e_1_2_7_5_1
  doi: 10.1016/j.actatropica.2016.12.031
– ident: e_1_2_7_26_1
  doi: 10.1056/NEJMoa011699
– ident: e_1_2_7_29_1
  doi: 10.1371/journal.pone.0064547
– ident: e_1_2_7_20_1
  doi: 10.1007/s00436-014-3917-6
– ident: e_1_2_7_17_1
  doi: 10.3109/13880209.2013.789536
– ident: e_1_2_7_33_1
  doi: 10.3390/molecules25051245
– ident: e_1_2_7_44_1
  doi: 10.3390/molecules24081476
– ident: e_1_2_7_1_1
  doi: 10.7554/eLife.08347
SSID ssj0028808
Score 2.3862092
Snippet Most of the hematophagous insects act as disease vectors, including Aedes aegypti, responsible for transmitting some of the most critical arboviruses globally,...
Most of the hematophagous insects act as disease vectors, including Aedes aegypti , responsible for transmitting some of the most critical arboviruses...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage e2100242
SubjectTerms Acetic acid
Aedes aegypti
Binding sites
Bioactive compounds
Bioassays
Culicidae
Dengue fever
Essential oils
Eucalyptus
Eucalyptus globulus
Geranyl acetate
Insects
Ligands
Metabolites
Molecular docking
mosquito
Mosquitoes
Natural products
Oils & fats
Pharmacology
pharmacophore model
Proteins
Repellents
Vector-borne diseases
Vectors
Title Identification of Bioactive Compounds against Aedes aegypti (Diptera: Culicidae) by Bioassays and in Silico Assays
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbdv.202100242
https://www.proquest.com/docview/2571905075
https://search.proquest.com/docview/2550259946
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66IHjxLa4vIgjqodg2fXpbd132JIIPvJVJJpGCdGXrCvvvnaS7VU-C3pomfSWZb2bSzDeMnUrfaMRceBAFETkosfakhNRGLEulcy0zZR3F0X16-5wNbixNThvF3_BDtAtuVjIcXlsBB1lffpGGKokf5N-FgVMzBMLkKrgYDnHXelw0OV0sHKlxL8jScMHa6IeXPy__qZW-TM3vBqvTOMP1_7_rBlubW5u810yPTbakqy220uSfnG2zSROma-brdnxsONWBg0BukcLmXKo5vEBJViTvadRUcpnLSn4-ILjRE7ji_elrqUoEfcHlzN2hrmFGLSvkZcXvS6oe8547ucMehzcP_ZE3T8LgKRETWqJJNAohE0STaW1iFUrp5yqGVCWYZiBEECkgRwx9g5Z-PjCASZZIgDzOldhlnWpc6T27i8r3kQwwSS2jyGSQCaUio2SKirAu7LKzxSAUbw3XRtGwKoeF7cGi7cEuO1yMUTGXubog8CHrhuzbuMtO2mqSFvsLBCo9nto29E1xnkdJl4VuxH55UtG_Hjy1pf2_XHTAVu1xszHtkHXeJ1N9xJZrnB672foJYCLqpQ
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZT9wwEB5xCNEXoBzqlstISKUP0SZxTt6WXdBWHKoEVH2LbI-NIqEs2rCV9t8zdnYDPFVCPPpKHHvmmxnHMwNwLH2jEXPuiSiIyECJtSelSK3HslQ61zJT1lAc3qY3f7PBuQ2T05v7wjTxIdoDN8sZDq8tg9sD6e5r1FAl8R8ZeGHg5MwiLEcJUaP14uC_W5uLyNN5w5Eg94IsDedxG_2w-378e7n0qmy-VVmdzLlY_4TZbsDaTOFkvYZCvsKCrjZhpUlBOd2CceOpa2ZHd2xkGLUJh4LMgoVNu1Qz8SBKUiRZT6OmkkteVrKTASGOHotT1p88lqpEoX8yOXVPqGsxpZ4VsrJityU1j1jPVW7D_cX5XX_ozfIweIrHBJhoEo2cywTRZFqbWIVS-rmKRaoSTDPBeRApQbYY-gZtBPrACEyyRAqRx7niO7BUjSr9zV6k8n0kHUxSzygymci4UpFRMkVFcBd24Md8F4qnJtxG0QRWDgu7gkW7gh3Ym29SMWO7uiD8IQWHVNy4A0dtMzGM_QsiKj2a2D70TXGeR0kHQrdl_3lT0T8b_GlL3z8y6BBWh3fXV8XVr5vLXfhi65t7anuw9Dye6H1YrHFy4Ej3BUFL7s0
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7xUBEXoC0V4VFcqRLtYcXuep_cQkJEBYoihVbcVrbHrlZCG5QlSPn3jL3JBk5I7XH92IftmfnG6_kG4Lv0jUbMuSeiICIHJdaelCK1EctS6VzLTFlH8XqcDu-z_pWlyWmj-Bt-iHbDzUqG09dWwB_RnK9IQ5XEZ_LvwsCZmXXYjAiLW_Z8zkety0Wr0wXDkR33giwNl7SNfnj-tv9bs7TCmq8RqzM5g93_f9k92FnATdZt1sdHWNPVJ_jQJKCcf4ZpE6drFht3bGIY1QmnA5lVFTbpUs3EX1ESjGRdjZquXOqykv3ok77RU3HBerOHUpUo9E8m5-4OdS3m1LJCVlZsXFL1hHVd4T78Hlzd9a69RRYGT_GY1CWaRCPnMkE0mdYmVqGUfq5ikaoE00xwHkRKkCeGvkHLPx8YgUmWSCHyOFf8C2xUk0of2GNUvo-EwCS1jCKTiYwrFRklU1Sk7MIOnC0noXhsyDaKhlY5LOwIFu0IduB4OUfFQujqgrQPwRsCuHEHvrXVJC72H4io9GRm29A3xXkeJR0I3Yy986Sid9n_014d_kunU9ga9QfF7a_hzRFs2-LmkNoxbDxNZ_oE1mucfXUL9wVhQe1z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Bioactive+Compounds+against+Aedes+aegypti+%28Diptera%3A+Culicidae%29+by+Bioassays+and+in+Silico+Assays&rft.jtitle=Chemistry+%26+biodiversity&rft.au=Brito%2C+Geisiane+Amorim&rft.au=Rocha+de+Oliveira%2C+Paulo+Fernando&rft.au=Andrade+Silva%2C+Caliene+Melo&rft.au=Ara%C3%BAjo+Neto%2C+Moys%C3%A9s+Fagundes&rft.date=2021-09-01&rft.issn=1612-1872&rft.eissn=1612-1880&rft.volume=18&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcbdv.202100242&rft.externalDBID=10.1002%252Fcbdv.202100242&rft.externalDocID=CBDV202100242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1612-1872&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1612-1872&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1612-1872&client=summon