3D Atomic‐Scale Dynamics of Laser‐Light‐Induced Restructuring of Nanoparticles Unraveled by Electron Tomography
Understanding light–matter interactions in nanomaterials is crucial for optoelectronic, photonic, and plasmonic applications. Specifically, metal nanoparticles (NPs) strongly interact with light and can undergo shape transformations, fragmentation and ablation upon (pulsed) laser excitation. Despite...
Saved in:
Published in: | Advanced materials (Weinheim) Vol. 33; no. 33; pp. e2100972 - n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Wiley Subscription Services, Inc
01-08-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Understanding light–matter interactions in nanomaterials is crucial for optoelectronic, photonic, and plasmonic applications. Specifically, metal nanoparticles (NPs) strongly interact with light and can undergo shape transformations, fragmentation and ablation upon (pulsed) laser excitation. Despite being vital for technological applications, experimental insight into the underlying atomistic processes is still lacking due to the complexity of such measurements. Herein, atomic resolution electron tomography is performed on the same mesoporous‐silica‐coated gold nanorod, before and after femtosecond laser irradiation, to assess the missing information. Combined with molecular dynamics (MD) simulations based on the experimentally determined 3D atomic‐scale morphology, the complex atomistic rearrangements, causing shape deformations and defect generation, are unraveled. These rearrangements are simultaneously driven by surface diffusion, facet restructuring, and strain formation, and are influenced by subtleties in the atomic distribution at the surface.
Atomic‐resolution electron tomography reveals atomic rearrangements in metal nanoparticles upon femtosecond laser excitation. Based on the measured 3D atomic structure, molecular dynamics simulations unravel the dynamics of the underlying process and give insight on how strain, crystal facet distribution, and surface diffusion govern these rearrangements. |
---|---|
AbstractList | Understanding light–matter interactions in nanomaterials is crucial for optoelectronic, photonic, and plasmonic applications. Specifically, metal nanoparticles (NPs) strongly interact with light and can undergo shape transformations, fragmentation and ablation upon (pulsed) laser excitation. Despite being vital for technological applications, experimental insight into the underlying atomistic processes is still lacking due to the complexity of such measurements. Herein, atomic resolution electron tomography is performed on the same mesoporous‐silica‐coated gold nanorod, before and after femtosecond laser irradiation, to assess the missing information. Combined with molecular dynamics (MD) simulations based on the experimentally determined 3D atomic‐scale morphology, the complex atomistic rearrangements, causing shape deformations and defect generation, are unraveled. These rearrangements are simultaneously driven by surface diffusion, facet restructuring, and strain formation, and are influenced by subtleties in the atomic distribution at the surface.
Atomic‐resolution electron tomography reveals atomic rearrangements in metal nanoparticles upon femtosecond laser excitation. Based on the measured 3D atomic structure, molecular dynamics simulations unravel the dynamics of the underlying process and give insight on how strain, crystal facet distribution, and surface diffusion govern these rearrangements. Understanding light–matter interactions in nanomaterials is crucial for optoelectronic, photonic, and plasmonic applications. Specifically, metal nanoparticles (NPs) strongly interact with light and can undergo shape transformations, fragmentation and ablation upon (pulsed) laser excitation. Despite being vital for technological applications, experimental insight into the underlying atomistic processes is still lacking due to the complexity of such measurements. Herein, atomic resolution electron tomography is performed on the same mesoporous‐silica‐coated gold nanorod, before and after femtosecond laser irradiation, to assess the missing information. Combined with molecular dynamics (MD) simulations based on the experimentally determined 3D atomic‐scale morphology, the complex atomistic rearrangements, causing shape deformations and defect generation, are unraveled. These rearrangements are simultaneously driven by surface diffusion, facet restructuring, and strain formation, and are influenced by subtleties in the atomic distribution at the surface. Understanding light–matter interactions in nanomaterials is crucial for optoelectronic, photonic, and plasmonic applications. Specifically, metal nanoparticles (NPs) strongly interact with light and can undergo shape transformations, fragmentation and ablation upon (pulsed) laser excitation. Despite being vital for technological applications, experimental insight into the underlying atomistic processes is still lacking due to the complexity of such measurements. Herein, atomic resolution electron tomography is performed on the same mesoporous‐silica‐coated gold nanorod, before and after femtosecond laser irradiation, to assess the missing information. Combined with molecular dynamics (MD) simulations based on the experimentally determined 3D atomic‐scale morphology, the complex atomistic rearrangements, causing shape deformations and defect generation, are unraveled. These rearrangements are simultaneously driven by surface diffusion, facet restructuring, and strain formation, and are influenced by subtleties in the atomic distribution at the surface. |
Author | Albrecht, Wiebke Deng, Tian‐Song van der Hoeven, Jessi E.S. Pedrazo‐Tardajos, Adrián Skorikov, Alexander Altantzis, Thomas Arslan Irmak, Ece van Blaaderen, Alfons Van Aert, Sandra Bals, Sara |
Author_xml | – sequence: 1 givenname: Wiebke orcidid: 0000-0002-0800-4933 surname: Albrecht fullname: Albrecht, Wiebke email: wiebke.albrecht@uantwerpen.be organization: Utrecht University – sequence: 2 givenname: Ece surname: Arslan Irmak fullname: Arslan Irmak, Ece organization: University of Antwerp – sequence: 3 givenname: Thomas surname: Altantzis fullname: Altantzis, Thomas organization: University of Antwerp – sequence: 4 givenname: Adrián surname: Pedrazo‐Tardajos fullname: Pedrazo‐Tardajos, Adrián organization: University of Antwerp – sequence: 5 givenname: Alexander surname: Skorikov fullname: Skorikov, Alexander organization: University of Antwerp – sequence: 6 givenname: Tian‐Song surname: Deng fullname: Deng, Tian‐Song organization: Hangzhou Dianzi University – sequence: 7 givenname: Jessi E.S. surname: van der Hoeven fullname: van der Hoeven, Jessi E.S. organization: Utrecht University – sequence: 8 givenname: Alfons surname: van Blaaderen fullname: van Blaaderen, Alfons email: a.vanblaaderen@uu.nl organization: Utrecht University – sequence: 9 givenname: Sandra surname: Van Aert fullname: Van Aert, Sandra email: sandra.vanaert@uantwerpen.be organization: University of Antwerp – sequence: 10 givenname: Sara surname: Bals fullname: Bals, Sara email: sara.bals@uantwerpen.be organization: University of Antwerp |
BookMark | eNqF0c9O4zAQBnALsRKly5VzJC5cUsZ27MTHivJP6u5Ku_Qcue6kDUrsYieg3HgEnpEnwVURSFz2NBr591kjfcfk0DqLhJxSmFAAdqFXrZ4wYHFROTsgIyoYTTNQ4pCMQHGRKpkVR-Q4hAeIRoIckZ7Pkmnn2tq8vbz-M7rBZDZYHfeQuCqZ64A-vszr9aaL886ueoOr5C-Gzvem631t1zv4W1u31b6rTYMhWVivn7CJcDkkVw2azjub3LvWrb3eboaf5Eelm4AnH3NMFtdX95e36fzPzd3ldJ4aLoClUiClS-CUqcqALFhOZS5VDqKCXBV0hUvIKok8M3JZccZlJrVQQmZYSa6Rj8n5_t-td499vLls62CwabRF14eSCQGSA8tFpGff6IPrvY3XRSVpwQpaQFSTvTLeheCxKre-brUfSgrlroVy10L52UIMqH3guW5w-I8up7Nf06_sO_cyj2g |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_3c01324 crossref_primary_10_1093_micmic_ozad067_287 crossref_primary_10_1021_acsenergylett_2c01755 crossref_primary_10_1021_acs_chemmater_3c01698 crossref_primary_10_1039_D1NR08130F crossref_primary_10_1063_5_0122888 crossref_primary_10_1007_s12274_022_4229_2 crossref_primary_10_1002_adma_202211983 crossref_primary_10_1007_s12274_024_6644_z crossref_primary_10_1016_j_matdes_2022_111443 crossref_primary_10_1007_s10562_023_04453_5 |
Cites_doi | 10.1016/j.nantod.2016.02.002 10.1021/acs.nanolett.5b03844 10.1002/smll.200800895 10.1039/b905203h 10.1002/adma.201701918 10.1017/9781108289801 10.1364/OE.16.018605 10.1063/1.4792659 10.1002/adma.201707003 10.1021/nl0727415 10.1021/acs.nanolett.8b04303 10.1364/OE.20.005069 10.1093/jmicro/dfy136 10.1364/OL.30.003341 10.1038/s41929-018-0138-x 10.1002/smll.202001101 10.1021/acs.jpcc.0c04281 10.1021/jp000679t 10.1021/acsnano.5b06623 10.1021/acs.accounts.9b00224 10.1021/acs.nanolett.5b04851 10.1016/0022-3093(94)00576-1 10.1038/nphoton.2012.266 10.1006/jcph.1995.1039 10.1103/PhysRevLett.85.110 10.1021/nn5055283 10.1088/0953-8984/28/5/053001 10.1002/adma.201104714 10.1093/jmicro/dfw018 10.1038/nature08053 10.1021/la800811j 10.1021/la0347859 10.1021/acs.jpcc.8b09458 10.1021/acsnano.0c02610 10.1039/C1CS15237H 10.1088/0965-0393/20/4/045021 10.1126/science.aaa6805 10.1038/nmat2329 10.1021/jp0011701 10.1063/1.2124667 10.1039/C4AN01079E 10.1039/B514644E 10.1021/jp1074913 10.26434/chemrxiv.13218155.v1 10.1021/jp983141k 10.1093/jmicro/dfu012 10.1364/OE.15.012151 10.1021/nl304478h 10.1038/s41929-019-0365-9 10.1126/science.aan8478 10.1021/acs.jpcb.7b03184 10.1021/nl051149h 10.1038/nmat4281 10.1364/OE.18.008867 10.1021/nl1042006 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202100972 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202100972 ADMA202100972 |
Genre | article |
GrantInformation_xml | – fundername: Fonds Wetenschappelijk Onderzoek funderid: G.0267.18N FP7 – fundername: National Science Foundation of China funderid: 61905056 – fundername: H2020 Marie Skłodowska‐Curie Actions funderid: 797153 – fundername: European Research Council funderid: 291667 – fundername: European Commission funderid: EUSMI – fundername: H2020 European Research Council funderid: 770887; 815128 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMNL AASGY AAYOK AAYXX ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3502-65e11b03129fc0682716769705f07981deb04f6e34c6bf323646a59564ef63ae3 |
IEDL.DBID | 33P |
ISSN | 0935-9648 |
IngestDate | Sat Aug 17 01:39:54 EDT 2024 Thu Oct 10 19:07:11 EDT 2024 Thu Nov 21 21:20:21 EST 2024 Sat Aug 24 01:02:28 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3502-65e11b03129fc0682716769705f07981deb04f6e34c6bf323646a59564ef63ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0800-4933 |
PQID | 2561828180 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2550630275 proquest_journals_2561828180 crossref_primary_10_1002_adma_202100972 wiley_primary_10_1002_adma_202100972_ADMA202100972 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 140 2011; 115 2018; 122 2019; 52 2010; 18 2000; 85 2020; 16 2011; 11 2019; 19 2020; 14 2008; 8 2003; 19 2020; 124 2015; 348 2008; 4 2014; 63 2017; 358 2009; 11 2018; 1 2013; 13 2019; 68 2005; 30 2008; 24 2013; 113 2018; 30 2017; 121 2014; 8 2012; 24 2012; 20 2015; 15 2015; 14 2011 2019; 2 2008; 16 2016; 10 1995; 117 2006; 8 2017; 29 1999; 103 2009; 459 2016; 16 2007; 15 2016; 11 2000; 104 2005; 123 2020 2005; 5 2016; 65 2009; 8 2017 2012; 6 2016; 28 1995; 182 2012; 41 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 Incropera F. P. (e_1_2_8_52_1) 2011 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_50_1 |
References_xml | – year: 2011 – volume: 115 start-page: 4375 year: 2011 publication-title: J. Phys. Chem. C – volume: 1 start-page: 656 year: 2018 publication-title: Nat. Catal. – volume: 2 start-page: 1107 year: 2019 publication-title: Nat. Catal. – volume: 140 start-page: 386 year: 2015 publication-title: Analyst – volume: 19 start-page: 477 year: 2019 publication-title: Nano Lett. – volume: 124 year: 2020 publication-title: J. Phys. Chem. C – volume: 8 start-page: 369 year: 2008 publication-title: Nano Lett. – volume: 8 start-page: 814 year: 2006 publication-title: Phys. Chem. Chem. Phys. – volume: 14 start-page: 567 year: 2015 publication-title: Nat. Mater. – volume: 15 year: 2007 publication-title: Opt. Express – volume: 121 start-page: 5660 year: 2017 publication-title: J. Phys. Chem. B – volume: 103 start-page: 1165 year: 1999 publication-title: J. Phys. Chem. A – volume: 14 year: 2020 publication-title: ACS Nano – volume: 16 year: 2020 publication-title: Small – volume: 348 start-page: 287 year: 2015 publication-title: Science – volume: 104 start-page: 7867 year: 2000 publication-title: J. Phys. Chem. B – volume: 13 start-page: 765 year: 2013 publication-title: Nano Lett. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 16 start-page: 1818 year: 2016 publication-title: Nano Lett. – volume: 5 start-page: 2174 year: 2005 publication-title: Nano Lett. – volume: 18 start-page: 8867 year: 2010 publication-title: Opt. Express – volume: 182 start-page: 59 year: 1995 publication-title: J. Non‐Cryst. Solids – volume: 19 start-page: 6693 year: 2003 publication-title: Langmuir – volume: 85 start-page: 110 year: 2000 publication-title: Phys. Rev. Lett. – volume: 24 start-page: 1418 year: 2012 publication-title: Adv. Mater. – volume: 30 start-page: 3341 year: 2005 publication-title: Opt. Lett. – volume: 68 start-page: 174 year: 2019 publication-title: Microscopy – volume: 117 start-page: 1 year: 1995 publication-title: J. Comput. Phys. – volume: 113 year: 2013 publication-title: J. Appl. Phys. – volume: 24 year: 2008 publication-title: Langmuir – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 11 start-page: 5915 year: 2009 publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 168 year: 2016 publication-title: Nano Today – volume: 20 start-page: 5069 year: 2012 publication-title: Opt. Express – volume: 41 start-page: 2740 year: 2012 publication-title: Chem. Soc. Rev. – volume: 16 year: 2008 publication-title: Opt. Express – volume: 358 start-page: 640 year: 2017 publication-title: Science – volume: 459 start-page: 410 year: 2009 publication-title: Nature – volume: 8 start-page: 126 year: 2009 publication-title: Nat. Mater. – volume: 123 year: 2005 publication-title: J. Chem. Phys. – volume: 63 start-page: 261 year: 2014 publication-title: Microscopy – volume: 52 start-page: 2506 year: 2019 publication-title: Acc. Chem. Res. – volume: 8 year: 2014 publication-title: ACS Nano – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 start-page: 709 year: 2012 publication-title: Nat. Photonics – volume: 104 start-page: 6152 year: 2000 publication-title: J. Phys. Chem. B – volume: 4 start-page: 1694 year: 2008 publication-title: Small – year: 2020 – volume: 10 start-page: 2144 year: 2016 publication-title: ACS Nano – volume: 11 start-page: 348 year: 2011 publication-title: Nano Lett. – volume: 15 start-page: 8282 year: 2015 publication-title: Nano Lett. – volume: 65 start-page: 391 year: 2016 publication-title: Microscopy – volume: 20 year: 2012 publication-title: Modelling Simul. Mater. Sci. Eng. – year: 2017 – volume: 28 year: 2016 publication-title: J. Phys. Condens. Matter – ident: e_1_2_8_2_1 doi: 10.1016/j.nantod.2016.02.002 – ident: e_1_2_8_38_1 doi: 10.1021/acs.nanolett.5b03844 – ident: e_1_2_8_31_1 doi: 10.1002/smll.200800895 – ident: e_1_2_8_15_1 doi: 10.1039/b905203h – ident: e_1_2_8_10_1 doi: 10.1002/adma.201701918 – ident: e_1_2_8_51_1 doi: 10.1017/9781108289801 – ident: e_1_2_8_7_1 doi: 10.1364/OE.16.018605 – ident: e_1_2_8_36_1 doi: 10.1063/1.4792659 – ident: e_1_2_8_27_1 doi: 10.1002/adma.201707003 – ident: e_1_2_8_49_1 doi: 10.1021/nl0727415 – ident: e_1_2_8_50_1 doi: 10.1021/acs.nanolett.8b04303 – ident: e_1_2_8_9_1 doi: 10.1364/OE.20.005069 – ident: e_1_2_8_37_1 doi: 10.1093/jmicro/dfy136 – ident: e_1_2_8_6_1 doi: 10.1364/OL.30.003341 – ident: e_1_2_8_12_1 doi: 10.1038/s41929-018-0138-x – ident: e_1_2_8_17_1 doi: 10.1002/smll.202001101 – ident: e_1_2_8_43_1 doi: 10.1021/acs.jpcc.0c04281 – ident: e_1_2_8_14_1 doi: 10.1021/jp000679t – ident: e_1_2_8_23_1 doi: 10.1021/acsnano.5b06623 – ident: e_1_2_8_13_1 doi: 10.1021/acs.accounts.9b00224 – ident: e_1_2_8_22_1 doi: 10.1021/acs.nanolett.5b04851 – ident: e_1_2_8_55_1 doi: 10.1016/0022-3093(94)00576-1 – ident: e_1_2_8_3_1 doi: 10.1038/nphoton.2012.266 – ident: e_1_2_8_53_1 doi: 10.1006/jcph.1995.1039 – ident: e_1_2_8_44_1 doi: 10.1103/PhysRevLett.85.110 – ident: e_1_2_8_16_1 doi: 10.1021/nn5055283 – ident: e_1_2_8_41_1 doi: 10.1088/0953-8984/28/5/053001 – ident: e_1_2_8_28_1 doi: 10.1002/adma.201104714 – ident: e_1_2_8_42_1 doi: 10.1093/jmicro/dfw018 – ident: e_1_2_8_8_1 doi: 10.1038/nature08053 – ident: e_1_2_8_21_1 doi: 10.1021/la800811j – ident: e_1_2_8_26_1 doi: 10.1021/la0347859 – ident: e_1_2_8_25_1 doi: 10.1021/acs.jpcc.8b09458 – ident: e_1_2_8_45_1 doi: 10.1021/acsnano.0c02610 – ident: e_1_2_8_1_1 doi: 10.1039/C1CS15237H – ident: e_1_2_8_56_1 doi: 10.1088/0965-0393/20/4/045021 – ident: e_1_2_8_5_1 doi: 10.1126/science.aaa6805 – ident: e_1_2_8_30_1 doi: 10.1038/nmat2329 – ident: e_1_2_8_32_1 doi: 10.1021/jp0011701 – ident: e_1_2_8_54_1 doi: 10.1063/1.2124667 – ident: e_1_2_8_4_1 doi: 10.1039/C4AN01079E – ident: e_1_2_8_39_1 doi: 10.1039/B514644E – ident: e_1_2_8_34_1 doi: 10.1021/jp1074913 – volume-title: Fundamentals of Heat and Mass Transfer year: 2011 ident: e_1_2_8_52_1 contributor: fullname: Incropera F. P. – ident: e_1_2_8_47_1 doi: 10.26434/chemrxiv.13218155.v1 – ident: e_1_2_8_18_1 doi: 10.1021/jp983141k – ident: e_1_2_8_33_1 doi: 10.1093/jmicro/dfu012 – ident: e_1_2_8_20_1 doi: 10.1364/OE.15.012151 – ident: e_1_2_8_48_1 doi: 10.1021/nl304478h – ident: e_1_2_8_46_1 doi: 10.1038/s41929-019-0365-9 – ident: e_1_2_8_24_1 doi: 10.1126/science.aan8478 – ident: e_1_2_8_40_1 doi: 10.1021/acs.jpcb.7b03184 – ident: e_1_2_8_35_1 doi: 10.1021/nl051149h – ident: e_1_2_8_11_1 doi: 10.1038/nmat4281 – ident: e_1_2_8_19_1 doi: 10.1364/OE.18.008867 – ident: e_1_2_8_29_1 doi: 10.1021/nl1042006 |
SSID | ssj0009606 |
Score | 2.465153 |
Snippet | Understanding light–matter interactions in nanomaterials is crucial for optoelectronic, photonic, and plasmonic applications. Specifically, metal nanoparticles... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2100972 |
SubjectTerms | 3D atomic structure Complexity femtosecond laser excitation Femtosecond pulsed lasers gold nanorods Laser ablation Lasers Materials science Molecular dynamics Morphology Nanomaterials Nanoparticles Nanorods Optoelectronics reshaping Silicon dioxide Surface diffusion Tomography |
Title | 3D Atomic‐Scale Dynamics of Laser‐Light‐Induced Restructuring of Nanoparticles Unraveled by Electron Tomography |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202100972 https://www.proquest.com/docview/2561828180 https://search.proquest.com/docview/2550630275 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagEwz8IwIFGQmJKWoa_yQZI9KKoSBEW4ktihN7ghQROrDxCDwjT8Kdk6bthARTYtlWIp_vfJ_t-46QqygUSnMpAZZwACim0G6ouIFiHiiAREWocSv7dhzcP4XJAGly2ij-mh-i3XBDzbD2GhU8U1VvSRqaFZY3CCALMtCAEQaoYGM42MOSdVfa5Jp42OdGkocL1kbP7613X1-Vlq7mqsNqV5zh7v__dY_sNN4mjevpsU82dHlAtlc4CA_JnCU0fsfY5O_PrzFITNOkzlJf0ZmhI1jl3qBmhCAenpjqI9cFfdQ186yNcsSGYKYBfzfX7Oi0xLRGz9BQfdBBk2qHTmYvDUP2EZkOB5ObW7fJxeDmTIDRlEL3-wosgB-Z3JOhDzgrkFHgCeMFETi9WnncSM14LpVhSEsvMwHgi2sjWabZMemUs1KfEIqLpcmhd8EAzUVcCR-mRcEAumTgjEmHXC9kkb7WlBtpTa7spziQaTuQDukuRJU2qlel4MMBZsIQdodcttWgNHgSkpV6Nsc2ArnG_EA4xLeC--VLaZzcxW3p9C-dzsgWvteXB7ukA0LS52SzKuYXdtL-ABVN7IM |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BGYCBNyJQwEhITFHTOHGSMSKtimgrRFuJzcrDniBFlA5s_AR-I7-EuyR9TUiIKXJsK5HPvrvP9n0HcB34bqIcIRCWOAhQdKZMP3E0FlMvQUiU-Yq2sjsDr__kRy2iyQlnsTAlP8R8w41WRqGvaYHThnRjwRoaZwVxEGIWoqBZhw1H4GykKA7-sODdFUV6TTruMwOsn_E2WnZjtf-qXVo4m8sua2Fz2rv_8Ld7sFM5nCwsZ8g-rKn8ALaXaAgPYcojFr5TePL359cAhaZYVCaqn7CxZl00dG9Y0yUcj0_K9pGqjD2qkny2CHSkhqipEYJXN-3YKKfMRs_YMPlgrSrbDhuOXyqS7CMYtVvD245ZpWMwU-6i3hSuajYTVAJ2oFNL-DZCLU8EnuVqywvQ71WJ5WihuJOKRHNiphexi_jLUVrwWPFjqOXjXJ0AI3upU-ydcQR0gZO4Ns6MjCN6idEfEwbczIQhX0vWDVnyK9uSBlLOB9KA-kxWslp9E4luHMImimI34GpejeuGDkPiXI2n1MYlujHbcw2wC8n98iUZRr1wXjr9S6dL2OwMe13Zvevfn8EWvS_vEtahhgJT57A-yaYXxQz-ARMQ8Ks |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwED7RIiEY-EcUChgJialqGjtOMlakVRGlqmgrsUX5sSdIKkoHNh6BZ-RJuEvStJ2QYIoc20rk853vs33fAdy4jhUqISXCEoEARceq4YRCYzGyQ4REsaNoK7s3sgfPjtchmpwyij_nhyg33EgzMntNCj6NdXNJGhrEGW8QQhZioKnApkBfnNjzOR8uaXdlll2TTvsarhTOgrbRMJvr_deXpaWvueqxZktOd-__P7sPu4W7ydr5_DiADZUcws4KCeERzLnH2u8UnPz9-TVCkSnm5WnqZyzVrI_L3BvW9AnF45NyfUQqZk8qp57NwhypIdppBODFPTs2SSiv0Qs2DD9Yp8i1w8bpa0GRfQyTbmd812sUyRgaEbfQakpLtVohmgDT1ZEhHROBli1d27C0Ybvo9arQEFoqLiIZak689DKwEH0JpSUPFD-BapIm6hQYrZY6wt4xRzjnitAycV7EHLFLgN6YrMHtQhb-NOfc8HN2ZdOngfTLgaxBfSEqv9C9mY9OHIImimGvwXVZjVpDRyFBotI5tbGIbMy0rRqYmeB--ZLf9h7bZensL52uYGvodf3-_eDhHLbpdX6RsA5VlJe6gMosnl9m8_cHK-TvUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Atomic%E2%80%90Scale+Dynamics+of+Laser%E2%80%90Light%E2%80%90Induced+Restructuring+of+Nanoparticles+Unraveled+by+Electron+Tomography&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Albrecht%2C+Wiebke&rft.au=Arslan+Irmak%2C+Ece&rft.au=Altantzis%2C+Thomas&rft.au=Pedrazo%E2%80%90Tardajos%2C+Adri%C3%A1n&rft.date=2021-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202100972&rft.externalDBID=10.1002%252Fadma.202100972&rft.externalDocID=ADMA202100972 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |