3D Atomic‐Scale Dynamics of Laser‐Light‐Induced Restructuring of Nanoparticles Unraveled by Electron Tomography

Understanding light–matter interactions in nanomaterials is crucial for optoelectronic, photonic, and plasmonic applications. Specifically, metal nanoparticles (NPs) strongly interact with light and can undergo shape transformations, fragmentation and ablation upon (pulsed) laser excitation. Despite...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 33; no. 33; pp. e2100972 - n/a
Main Authors: Albrecht, Wiebke, Arslan Irmak, Ece, Altantzis, Thomas, Pedrazo‐Tardajos, Adrián, Skorikov, Alexander, Deng, Tian‐Song, van der Hoeven, Jessi E.S., van Blaaderen, Alfons, Van Aert, Sandra, Bals, Sara
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01-08-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Understanding light–matter interactions in nanomaterials is crucial for optoelectronic, photonic, and plasmonic applications. Specifically, metal nanoparticles (NPs) strongly interact with light and can undergo shape transformations, fragmentation and ablation upon (pulsed) laser excitation. Despite being vital for technological applications, experimental insight into the underlying atomistic processes is still lacking due to the complexity of such measurements. Herein, atomic resolution electron tomography is performed on the same mesoporous‐silica‐coated gold nanorod, before and after femtosecond laser irradiation, to assess the missing information. Combined with molecular dynamics (MD) simulations based on the experimentally determined 3D atomic‐scale morphology, the complex atomistic rearrangements, causing shape deformations and defect generation, are unraveled. These rearrangements are simultaneously driven by surface diffusion, facet restructuring, and strain formation, and are influenced by subtleties in the atomic distribution at the surface. Atomic‐resolution electron tomography reveals atomic rearrangements in metal nanoparticles upon femtosecond laser excitation. Based on the measured 3D atomic structure, molecular dynamics simulations unravel the dynamics of the underlying process and give insight on how strain, crystal facet distribution, and surface diffusion govern these rearrangements.
AbstractList Understanding light–matter interactions in nanomaterials is crucial for optoelectronic, photonic, and plasmonic applications. Specifically, metal nanoparticles (NPs) strongly interact with light and can undergo shape transformations, fragmentation and ablation upon (pulsed) laser excitation. Despite being vital for technological applications, experimental insight into the underlying atomistic processes is still lacking due to the complexity of such measurements. Herein, atomic resolution electron tomography is performed on the same mesoporous‐silica‐coated gold nanorod, before and after femtosecond laser irradiation, to assess the missing information. Combined with molecular dynamics (MD) simulations based on the experimentally determined 3D atomic‐scale morphology, the complex atomistic rearrangements, causing shape deformations and defect generation, are unraveled. These rearrangements are simultaneously driven by surface diffusion, facet restructuring, and strain formation, and are influenced by subtleties in the atomic distribution at the surface. Atomic‐resolution electron tomography reveals atomic rearrangements in metal nanoparticles upon femtosecond laser excitation. Based on the measured 3D atomic structure, molecular dynamics simulations unravel the dynamics of the underlying process and give insight on how strain, crystal facet distribution, and surface diffusion govern these rearrangements.
Understanding light–matter interactions in nanomaterials is crucial for optoelectronic, photonic, and plasmonic applications. Specifically, metal nanoparticles (NPs) strongly interact with light and can undergo shape transformations, fragmentation and ablation upon (pulsed) laser excitation. Despite being vital for technological applications, experimental insight into the underlying atomistic processes is still lacking due to the complexity of such measurements. Herein, atomic resolution electron tomography is performed on the same mesoporous‐silica‐coated gold nanorod, before and after femtosecond laser irradiation, to assess the missing information. Combined with molecular dynamics (MD) simulations based on the experimentally determined 3D atomic‐scale morphology, the complex atomistic rearrangements, causing shape deformations and defect generation, are unraveled. These rearrangements are simultaneously driven by surface diffusion, facet restructuring, and strain formation, and are influenced by subtleties in the atomic distribution at the surface.
Understanding light–matter interactions in nanomaterials is crucial for optoelectronic, photonic, and plasmonic applications. Specifically, metal nanoparticles (NPs) strongly interact with light and can undergo shape transformations, fragmentation and ablation upon (pulsed) laser excitation. Despite being vital for technological applications, experimental insight into the underlying atomistic processes is still lacking due to the complexity of such measurements. Herein, atomic resolution electron tomography is performed on the same mesoporous‐silica‐coated gold nanorod, before and after femtosecond laser irradiation, to assess the missing information. Combined with molecular dynamics (MD) simulations based on the experimentally determined 3D atomic‐scale morphology, the complex atomistic rearrangements, causing shape deformations and defect generation, are unraveled. These rearrangements are simultaneously driven by surface diffusion, facet restructuring, and strain formation, and are influenced by subtleties in the atomic distribution at the surface.
Author Albrecht, Wiebke
Deng, Tian‐Song
van der Hoeven, Jessi E.S.
Pedrazo‐Tardajos, Adrián
Skorikov, Alexander
Altantzis, Thomas
Arslan Irmak, Ece
van Blaaderen, Alfons
Van Aert, Sandra
Bals, Sara
Author_xml – sequence: 1
  givenname: Wiebke
  orcidid: 0000-0002-0800-4933
  surname: Albrecht
  fullname: Albrecht, Wiebke
  email: wiebke.albrecht@uantwerpen.be
  organization: Utrecht University
– sequence: 2
  givenname: Ece
  surname: Arslan Irmak
  fullname: Arslan Irmak, Ece
  organization: University of Antwerp
– sequence: 3
  givenname: Thomas
  surname: Altantzis
  fullname: Altantzis, Thomas
  organization: University of Antwerp
– sequence: 4
  givenname: Adrián
  surname: Pedrazo‐Tardajos
  fullname: Pedrazo‐Tardajos, Adrián
  organization: University of Antwerp
– sequence: 5
  givenname: Alexander
  surname: Skorikov
  fullname: Skorikov, Alexander
  organization: University of Antwerp
– sequence: 6
  givenname: Tian‐Song
  surname: Deng
  fullname: Deng, Tian‐Song
  organization: Hangzhou Dianzi University
– sequence: 7
  givenname: Jessi E.S.
  surname: van der Hoeven
  fullname: van der Hoeven, Jessi E.S.
  organization: Utrecht University
– sequence: 8
  givenname: Alfons
  surname: van Blaaderen
  fullname: van Blaaderen, Alfons
  email: a.vanblaaderen@uu.nl
  organization: Utrecht University
– sequence: 9
  givenname: Sandra
  surname: Van Aert
  fullname: Van Aert, Sandra
  email: sandra.vanaert@uantwerpen.be
  organization: University of Antwerp
– sequence: 10
  givenname: Sara
  surname: Bals
  fullname: Bals, Sara
  email: sara.bals@uantwerpen.be
  organization: University of Antwerp
BookMark eNqF0c9O4zAQBnALsRKly5VzJC5cUsZ27MTHivJP6u5Ku_Qcue6kDUrsYieg3HgEnpEnwVURSFz2NBr591kjfcfk0DqLhJxSmFAAdqFXrZ4wYHFROTsgIyoYTTNQ4pCMQHGRKpkVR-Q4hAeIRoIckZ7Pkmnn2tq8vbz-M7rBZDZYHfeQuCqZ64A-vszr9aaL886ueoOr5C-Gzvem631t1zv4W1u31b6rTYMhWVivn7CJcDkkVw2azjub3LvWrb3eboaf5Eelm4AnH3NMFtdX95e36fzPzd3ldJ4aLoClUiClS-CUqcqALFhOZS5VDqKCXBV0hUvIKok8M3JZccZlJrVQQmZYSa6Rj8n5_t-td499vLls62CwabRF14eSCQGSA8tFpGff6IPrvY3XRSVpwQpaQFSTvTLeheCxKre-brUfSgrlroVy10L52UIMqH3guW5w-I8up7Nf06_sO_cyj2g
CitedBy_id crossref_primary_10_1021_acs_jpclett_3c01324
crossref_primary_10_1093_micmic_ozad067_287
crossref_primary_10_1021_acsenergylett_2c01755
crossref_primary_10_1021_acs_chemmater_3c01698
crossref_primary_10_1039_D1NR08130F
crossref_primary_10_1063_5_0122888
crossref_primary_10_1007_s12274_022_4229_2
crossref_primary_10_1002_adma_202211983
crossref_primary_10_1007_s12274_024_6644_z
crossref_primary_10_1016_j_matdes_2022_111443
crossref_primary_10_1007_s10562_023_04453_5
Cites_doi 10.1016/j.nantod.2016.02.002
10.1021/acs.nanolett.5b03844
10.1002/smll.200800895
10.1039/b905203h
10.1002/adma.201701918
10.1017/9781108289801
10.1364/OE.16.018605
10.1063/1.4792659
10.1002/adma.201707003
10.1021/nl0727415
10.1021/acs.nanolett.8b04303
10.1364/OE.20.005069
10.1093/jmicro/dfy136
10.1364/OL.30.003341
10.1038/s41929-018-0138-x
10.1002/smll.202001101
10.1021/acs.jpcc.0c04281
10.1021/jp000679t
10.1021/acsnano.5b06623
10.1021/acs.accounts.9b00224
10.1021/acs.nanolett.5b04851
10.1016/0022-3093(94)00576-1
10.1038/nphoton.2012.266
10.1006/jcph.1995.1039
10.1103/PhysRevLett.85.110
10.1021/nn5055283
10.1088/0953-8984/28/5/053001
10.1002/adma.201104714
10.1093/jmicro/dfw018
10.1038/nature08053
10.1021/la800811j
10.1021/la0347859
10.1021/acs.jpcc.8b09458
10.1021/acsnano.0c02610
10.1039/C1CS15237H
10.1088/0965-0393/20/4/045021
10.1126/science.aaa6805
10.1038/nmat2329
10.1021/jp0011701
10.1063/1.2124667
10.1039/C4AN01079E
10.1039/B514644E
10.1021/jp1074913
10.26434/chemrxiv.13218155.v1
10.1021/jp983141k
10.1093/jmicro/dfu012
10.1364/OE.15.012151
10.1021/nl304478h
10.1038/s41929-019-0365-9
10.1126/science.aan8478
10.1021/acs.jpcb.7b03184
10.1021/nl051149h
10.1038/nmat4281
10.1364/OE.18.008867
10.1021/nl1042006
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202100972
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202100972
ADMA202100972
Genre article
GrantInformation_xml – fundername: Fonds Wetenschappelijk Onderzoek
  funderid: G.0267.18N FP7
– fundername: National Science Foundation of China
  funderid: 61905056
– fundername: H2020 Marie Skłodowska‐Curie Actions
  funderid: 797153
– fundername: European Research Council
  funderid: 291667
– fundername: European Commission
  funderid: EUSMI
– fundername: H2020 European Research Council
  funderid: 770887; 815128
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMNL
AASGY
AAYOK
AAYXX
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3502-65e11b03129fc0682716769705f07981deb04f6e34c6bf323646a59564ef63ae3
IEDL.DBID 33P
ISSN 0935-9648
IngestDate Sat Aug 17 01:39:54 EDT 2024
Thu Oct 10 19:07:11 EDT 2024
Thu Nov 21 21:20:21 EST 2024
Sat Aug 24 01:02:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3502-65e11b03129fc0682716769705f07981deb04f6e34c6bf323646a59564ef63ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0800-4933
PQID 2561828180
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2550630275
proquest_journals_2561828180
crossref_primary_10_1002_adma_202100972
wiley_primary_10_1002_adma_202100972_ADMA202100972
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 140
2011; 115
2018; 122
2019; 52
2010; 18
2000; 85
2020; 16
2011; 11
2019; 19
2020; 14
2008; 8
2003; 19
2020; 124
2015; 348
2008; 4
2014; 63
2017; 358
2009; 11
2018; 1
2013; 13
2019; 68
2005; 30
2008; 24
2013; 113
2018; 30
2017; 121
2014; 8
2012; 24
2012; 20
2015; 15
2015; 14
2011
2019; 2
2008; 16
2016; 10
1995; 117
2006; 8
2017; 29
1999; 103
2009; 459
2016; 16
2007; 15
2016; 11
2000; 104
2005; 123
2020
2005; 5
2016; 65
2009; 8
2017
2012; 6
2016; 28
1995; 182
2012; 41
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
Incropera F. P. (e_1_2_8_52_1) 2011
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – year: 2011
– volume: 115
  start-page: 4375
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 656
  year: 2018
  publication-title: Nat. Catal.
– volume: 2
  start-page: 1107
  year: 2019
  publication-title: Nat. Catal.
– volume: 140
  start-page: 386
  year: 2015
  publication-title: Analyst
– volume: 19
  start-page: 477
  year: 2019
  publication-title: Nano Lett.
– volume: 124
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 369
  year: 2008
  publication-title: Nano Lett.
– volume: 8
  start-page: 814
  year: 2006
  publication-title: Phys. Chem. Chem. Phys.
– volume: 14
  start-page: 567
  year: 2015
  publication-title: Nat. Mater.
– volume: 15
  year: 2007
  publication-title: Opt. Express
– volume: 121
  start-page: 5660
  year: 2017
  publication-title: J. Phys. Chem. B
– volume: 103
  start-page: 1165
  year: 1999
  publication-title: J. Phys. Chem. A
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 16
  year: 2020
  publication-title: Small
– volume: 348
  start-page: 287
  year: 2015
  publication-title: Science
– volume: 104
  start-page: 7867
  year: 2000
  publication-title: J. Phys. Chem. B
– volume: 13
  start-page: 765
  year: 2013
  publication-title: Nano Lett.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 16
  start-page: 1818
  year: 2016
  publication-title: Nano Lett.
– volume: 5
  start-page: 2174
  year: 2005
  publication-title: Nano Lett.
– volume: 18
  start-page: 8867
  year: 2010
  publication-title: Opt. Express
– volume: 182
  start-page: 59
  year: 1995
  publication-title: J. Non‐Cryst. Solids
– volume: 19
  start-page: 6693
  year: 2003
  publication-title: Langmuir
– volume: 85
  start-page: 110
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 24
  start-page: 1418
  year: 2012
  publication-title: Adv. Mater.
– volume: 30
  start-page: 3341
  year: 2005
  publication-title: Opt. Lett.
– volume: 68
  start-page: 174
  year: 2019
  publication-title: Microscopy
– volume: 117
  start-page: 1
  year: 1995
  publication-title: J. Comput. Phys.
– volume: 113
  year: 2013
  publication-title: J. Appl. Phys.
– volume: 24
  year: 2008
  publication-title: Langmuir
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 5915
  year: 2009
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 168
  year: 2016
  publication-title: Nano Today
– volume: 20
  start-page: 5069
  year: 2012
  publication-title: Opt. Express
– volume: 41
  start-page: 2740
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 16
  year: 2008
  publication-title: Opt. Express
– volume: 358
  start-page: 640
  year: 2017
  publication-title: Science
– volume: 459
  start-page: 410
  year: 2009
  publication-title: Nature
– volume: 8
  start-page: 126
  year: 2009
  publication-title: Nat. Mater.
– volume: 123
  year: 2005
  publication-title: J. Chem. Phys.
– volume: 63
  start-page: 261
  year: 2014
  publication-title: Microscopy
– volume: 52
  start-page: 2506
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 709
  year: 2012
  publication-title: Nat. Photonics
– volume: 104
  start-page: 6152
  year: 2000
  publication-title: J. Phys. Chem. B
– volume: 4
  start-page: 1694
  year: 2008
  publication-title: Small
– year: 2020
– volume: 10
  start-page: 2144
  year: 2016
  publication-title: ACS Nano
– volume: 11
  start-page: 348
  year: 2011
  publication-title: Nano Lett.
– volume: 15
  start-page: 8282
  year: 2015
  publication-title: Nano Lett.
– volume: 65
  start-page: 391
  year: 2016
  publication-title: Microscopy
– volume: 20
  year: 2012
  publication-title: Modelling Simul. Mater. Sci. Eng.
– year: 2017
– volume: 28
  year: 2016
  publication-title: J. Phys. Condens. Matter
– ident: e_1_2_8_2_1
  doi: 10.1016/j.nantod.2016.02.002
– ident: e_1_2_8_38_1
  doi: 10.1021/acs.nanolett.5b03844
– ident: e_1_2_8_31_1
  doi: 10.1002/smll.200800895
– ident: e_1_2_8_15_1
  doi: 10.1039/b905203h
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.201701918
– ident: e_1_2_8_51_1
  doi: 10.1017/9781108289801
– ident: e_1_2_8_7_1
  doi: 10.1364/OE.16.018605
– ident: e_1_2_8_36_1
  doi: 10.1063/1.4792659
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.201707003
– ident: e_1_2_8_49_1
  doi: 10.1021/nl0727415
– ident: e_1_2_8_50_1
  doi: 10.1021/acs.nanolett.8b04303
– ident: e_1_2_8_9_1
  doi: 10.1364/OE.20.005069
– ident: e_1_2_8_37_1
  doi: 10.1093/jmicro/dfy136
– ident: e_1_2_8_6_1
  doi: 10.1364/OL.30.003341
– ident: e_1_2_8_12_1
  doi: 10.1038/s41929-018-0138-x
– ident: e_1_2_8_17_1
  doi: 10.1002/smll.202001101
– ident: e_1_2_8_43_1
  doi: 10.1021/acs.jpcc.0c04281
– ident: e_1_2_8_14_1
  doi: 10.1021/jp000679t
– ident: e_1_2_8_23_1
  doi: 10.1021/acsnano.5b06623
– ident: e_1_2_8_13_1
  doi: 10.1021/acs.accounts.9b00224
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.nanolett.5b04851
– ident: e_1_2_8_55_1
  doi: 10.1016/0022-3093(94)00576-1
– ident: e_1_2_8_3_1
  doi: 10.1038/nphoton.2012.266
– ident: e_1_2_8_53_1
  doi: 10.1006/jcph.1995.1039
– ident: e_1_2_8_44_1
  doi: 10.1103/PhysRevLett.85.110
– ident: e_1_2_8_16_1
  doi: 10.1021/nn5055283
– ident: e_1_2_8_41_1
  doi: 10.1088/0953-8984/28/5/053001
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.201104714
– ident: e_1_2_8_42_1
  doi: 10.1093/jmicro/dfw018
– ident: e_1_2_8_8_1
  doi: 10.1038/nature08053
– ident: e_1_2_8_21_1
  doi: 10.1021/la800811j
– ident: e_1_2_8_26_1
  doi: 10.1021/la0347859
– ident: e_1_2_8_25_1
  doi: 10.1021/acs.jpcc.8b09458
– ident: e_1_2_8_45_1
  doi: 10.1021/acsnano.0c02610
– ident: e_1_2_8_1_1
  doi: 10.1039/C1CS15237H
– ident: e_1_2_8_56_1
  doi: 10.1088/0965-0393/20/4/045021
– ident: e_1_2_8_5_1
  doi: 10.1126/science.aaa6805
– ident: e_1_2_8_30_1
  doi: 10.1038/nmat2329
– ident: e_1_2_8_32_1
  doi: 10.1021/jp0011701
– ident: e_1_2_8_54_1
  doi: 10.1063/1.2124667
– ident: e_1_2_8_4_1
  doi: 10.1039/C4AN01079E
– ident: e_1_2_8_39_1
  doi: 10.1039/B514644E
– ident: e_1_2_8_34_1
  doi: 10.1021/jp1074913
– volume-title: Fundamentals of Heat and Mass Transfer
  year: 2011
  ident: e_1_2_8_52_1
  contributor:
    fullname: Incropera F. P.
– ident: e_1_2_8_47_1
  doi: 10.26434/chemrxiv.13218155.v1
– ident: e_1_2_8_18_1
  doi: 10.1021/jp983141k
– ident: e_1_2_8_33_1
  doi: 10.1093/jmicro/dfu012
– ident: e_1_2_8_20_1
  doi: 10.1364/OE.15.012151
– ident: e_1_2_8_48_1
  doi: 10.1021/nl304478h
– ident: e_1_2_8_46_1
  doi: 10.1038/s41929-019-0365-9
– ident: e_1_2_8_24_1
  doi: 10.1126/science.aan8478
– ident: e_1_2_8_40_1
  doi: 10.1021/acs.jpcb.7b03184
– ident: e_1_2_8_35_1
  doi: 10.1021/nl051149h
– ident: e_1_2_8_11_1
  doi: 10.1038/nmat4281
– ident: e_1_2_8_19_1
  doi: 10.1364/OE.18.008867
– ident: e_1_2_8_29_1
  doi: 10.1021/nl1042006
SSID ssj0009606
Score 2.465153
Snippet Understanding light–matter interactions in nanomaterials is crucial for optoelectronic, photonic, and plasmonic applications. Specifically, metal nanoparticles...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage e2100972
SubjectTerms 3D atomic structure
Complexity
femtosecond laser excitation
Femtosecond pulsed lasers
gold nanorods
Laser ablation
Lasers
Materials science
Molecular dynamics
Morphology
Nanomaterials
Nanoparticles
Nanorods
Optoelectronics
reshaping
Silicon dioxide
Surface diffusion
Tomography
Title 3D Atomic‐Scale Dynamics of Laser‐Light‐Induced Restructuring of Nanoparticles Unraveled by Electron Tomography
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202100972
https://www.proquest.com/docview/2561828180
https://search.proquest.com/docview/2550630275
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagEwz8IwIFGQmJKWoa_yQZI9KKoSBEW4ktihN7ghQROrDxCDwjT8Kdk6bthARTYtlWIp_vfJ_t-46QqygUSnMpAZZwACim0G6ouIFiHiiAREWocSv7dhzcP4XJAGly2ij-mh-i3XBDzbD2GhU8U1VvSRqaFZY3CCALMtCAEQaoYGM42MOSdVfa5Jp42OdGkocL1kbP7613X1-Vlq7mqsNqV5zh7v__dY_sNN4mjevpsU82dHlAtlc4CA_JnCU0fsfY5O_PrzFITNOkzlJf0ZmhI1jl3qBmhCAenpjqI9cFfdQ186yNcsSGYKYBfzfX7Oi0xLRGz9BQfdBBk2qHTmYvDUP2EZkOB5ObW7fJxeDmTIDRlEL3-wosgB-Z3JOhDzgrkFHgCeMFETi9WnncSM14LpVhSEsvMwHgi2sjWabZMemUs1KfEIqLpcmhd8EAzUVcCR-mRcEAumTgjEmHXC9kkb7WlBtpTa7spziQaTuQDukuRJU2qlel4MMBZsIQdodcttWgNHgSkpV6Nsc2ArnG_EA4xLeC--VLaZzcxW3p9C-dzsgWvteXB7ukA0LS52SzKuYXdtL-ABVN7IM
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BGYCBNyJQwEhITFHTOHGSMSKtimgrRFuJzcrDniBFlA5s_AR-I7-EuyR9TUiIKXJsK5HPvrvP9n0HcB34bqIcIRCWOAhQdKZMP3E0FlMvQUiU-Yq2sjsDr__kRy2iyQlnsTAlP8R8w41WRqGvaYHThnRjwRoaZwVxEGIWoqBZhw1H4GykKA7-sODdFUV6TTruMwOsn_E2WnZjtf-qXVo4m8sua2Fz2rv_8Ld7sFM5nCwsZ8g-rKn8ALaXaAgPYcojFr5TePL359cAhaZYVCaqn7CxZl00dG9Y0yUcj0_K9pGqjD2qkny2CHSkhqipEYJXN-3YKKfMRs_YMPlgrSrbDhuOXyqS7CMYtVvD245ZpWMwU-6i3hSuajYTVAJ2oFNL-DZCLU8EnuVqywvQ71WJ5WihuJOKRHNiphexi_jLUVrwWPFjqOXjXJ0AI3upU-ydcQR0gZO4Ns6MjCN6idEfEwbczIQhX0vWDVnyK9uSBlLOB9KA-kxWslp9E4luHMImimI34GpejeuGDkPiXI2n1MYlujHbcw2wC8n98iUZRr1wXjr9S6dL2OwMe13Zvevfn8EWvS_vEtahhgJT57A-yaYXxQz-ARMQ8Ks
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwED7RIiEY-EcUChgJialqGjtOMlakVRGlqmgrsUX5sSdIKkoHNh6BZ-RJuEvStJ2QYIoc20rk853vs33fAdy4jhUqISXCEoEARceq4YRCYzGyQ4REsaNoK7s3sgfPjtchmpwyij_nhyg33EgzMntNCj6NdXNJGhrEGW8QQhZioKnApkBfnNjzOR8uaXdlll2TTvsarhTOgrbRMJvr_deXpaWvueqxZktOd-__P7sPu4W7ydr5_DiADZUcws4KCeERzLnH2u8UnPz9-TVCkSnm5WnqZyzVrI_L3BvW9AnF45NyfUQqZk8qp57NwhypIdppBODFPTs2SSiv0Qs2DD9Yp8i1w8bpa0GRfQyTbmd812sUyRgaEbfQakpLtVohmgDT1ZEhHROBli1d27C0Ybvo9arQEFoqLiIZak689DKwEH0JpSUPFD-BapIm6hQYrZY6wt4xRzjnitAycV7EHLFLgN6YrMHtQhb-NOfc8HN2ZdOngfTLgaxBfSEqv9C9mY9OHIImimGvwXVZjVpDRyFBotI5tbGIbMy0rRqYmeB--ZLf9h7bZensL52uYGvodf3-_eDhHLbpdX6RsA5VlJe6gMosnl9m8_cHK-TvUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Atomic%E2%80%90Scale+Dynamics+of+Laser%E2%80%90Light%E2%80%90Induced+Restructuring+of+Nanoparticles+Unraveled+by+Electron+Tomography&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Albrecht%2C+Wiebke&rft.au=Arslan+Irmak%2C+Ece&rft.au=Altantzis%2C+Thomas&rft.au=Pedrazo%E2%80%90Tardajos%2C+Adri%C3%A1n&rft.date=2021-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202100972&rft.externalDBID=10.1002%252Fadma.202100972&rft.externalDocID=ADMA202100972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon