Interpolation of monogenic functions by using reproducing kernel Hilbert spaces
In this paper, we present results on interpolation of monogenic functions in the unit ball of Rd+1 using reproducing kernels and randomly chosen interpolation points. The main theoretical results are proved based on the concept of uniformly discrete sequences. Furthermore, estimates for the interpol...
Saved in:
Published in: | Mathematical methods in the applied sciences Vol. 41; no. 17; pp. 8100 - 8114 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Freiburg
Wiley Subscription Services, Inc
30-11-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this paper, we present results on interpolation of monogenic functions in the unit ball of
Rd+1 using reproducing kernels and randomly chosen interpolation points. The main theoretical results are proved based on the concept of uniformly discrete sequences. Furthermore, estimates for the interpolation error as well as for the eigenvalues of the interpolation problems are presented. Numerical results are presented in the end. |
---|---|
AbstractList | In this paper, we present results on interpolation of monogenic functions in the unit ball of
Rd+1 using reproducing kernels and randomly chosen interpolation points. The main theoretical results are proved based on the concept of uniformly discrete sequences. Furthermore, estimates for the interpolation error as well as for the eigenvalues of the interpolation problems are presented. Numerical results are presented in the end. In this paper, we present results on interpolation of monogenic functions in the unit ball of Rd+1 using reproducing kernels and randomly chosen interpolation points. The main theoretical results are proved based on the concept of uniformly discrete sequences. Furthermore, estimates for the interpolation error as well as for the eigenvalues of the interpolation problems are presented. Numerical results are presented in the end. In this paper, we present results on interpolation of monogenic functions in the unit ball of using reproducing kernels and randomly chosen interpolation points. The main theoretical results are proved based on the concept of uniformly discrete sequences. Furthermore, estimates for the interpolation error as well as for the eigenvalues of the interpolation problems are presented. Numerical results are presented in the end. |
Author | Cerejeiras, Paula Legatiuk, Dmitrii Kähler, Uwe |
Author_xml | – sequence: 1 givenname: Paula orcidid: 0000-0001-7667-4595 surname: Cerejeiras fullname: Cerejeiras, Paula organization: Universidade de Aveiro – sequence: 2 givenname: Uwe orcidid: 0000-0002-9066-1819 surname: Kähler fullname: Kähler, Uwe organization: Universidade de Aveiro – sequence: 3 givenname: Dmitrii orcidid: 0000-0002-0028-5793 surname: Legatiuk fullname: Legatiuk, Dmitrii email: dmitrii.legatiuk@uni‐weimar.de organization: Bauhaus‐Universität Weimar |
BookMark | eNp1kE1rwzAMhs3oYG032E8w7LJLOsnOR3MsZR-Fll62s0ltpaRL7MxOGP33S9Zdd5IQD5LeZ8Ym1lli7B5hgQDiqWmKRSIyvGJThDyPMM7SCZsCZhDFAuMbNgvhBABLRDFl-43tyLeuLrrKWe5K3jjrjmQrzcve6nEa-OHM-1DZI_fUemd6Pfaf5C3V_K2qD-Q7HtpCU7hl12VRB7r7q3P28fL8vn6LtvvXzXq1jbRMAKOi1FgKzPEQG4gF6VSCLCBNsFwimETKHCGWJJNMGIOkM8xNki7RmFwPUeScPVz2Dv989RQ6dXK9t8NJJTBBkYsU5EA9XijtXQieStX6qin8WSGoUZcadKlR14BGF_S7qun8L6d2u9Uv_wPyj2yR |
Cites_doi | 10.1515/9783112576182 10.1090/S0002-9947-06-04064-5 10.1137/0722066 10.1002/cpa.20042 10.1016/j.acha.2006.05.003 10.1016/j.jfa.2004.07.012 10.1080/17476933.2016.1250896 10.1007/978-1-4612-4814-9 10.1016/j.acha.2004.12.004 10.1007/s00041-011-9169-2 10.1016/S0252-9602(14)60035-7 10.1016/j.jmaa.2014.07.028 10.1088/0266-5611/26/2/025007 10.1007/978-3-0348-0667-1_14 10.1016/j.cam.2016.08.002 10.3934/ipi.2007.1.29 10.1088/0266-5611/24/6/065013 10.1016/S1076-5670(07)00001-8 10.1007/978-3-319-42514-6 10.1109/IJCNN.2009.5179093 |
ContentType | Journal Article |
Copyright | 2018 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2018 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 |
DOI | 10.1002/mma.5271 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-1476 |
EndPage | 8114 |
ExternalDocumentID | 10_1002_mma_5271 MMA5271 |
Genre | article |
GrantInformation_xml | – fundername: ERASMUS+ Strategic Partnership funderid: 2016-1-DE01-KA203-002905 – fundername: DAAD-CRUP funderid: ref. A-15/17 – fundername: Portuguese Foundation for Science and Technology funderid: UID/MAT/0416/2013 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMNL AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 |
ID | FETCH-LOGICAL-c3501-afc1f2191b4d042ec6303a0651f810d53391043e3572dd1ec719d5681dd9c1703 |
IEDL.DBID | 33P |
ISSN | 0170-4214 |
IngestDate | Thu Oct 10 17:05:57 EDT 2024 Fri Nov 22 00:48:23 EST 2024 Sat Aug 24 00:55:06 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3501-afc1f2191b4d042ec6303a0651f810d53391043e3572dd1ec719d5681dd9c1703 |
ORCID | 0000-0001-7667-4595 0000-0002-9066-1819 0000-0002-0028-5793 |
OpenAccessLink | http://hdl.handle.net/10773/24726 |
PQID | 2151292603 |
PQPubID | 1016386 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2151292603 crossref_primary_10_1002_mma_5271 wiley_primary_10_1002_mma_5271_MMA5271 |
PublicationCentury | 2000 |
PublicationDate | 30 November 2018 |
PublicationDateYYYYMMDD | 2018-11-30 |
PublicationDate_xml | – month: 11 year: 2018 text: 30 November 2018 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Freiburg |
PublicationPlace_xml | – name: Freiburg |
PublicationTitle | Mathematical methods in the applied sciences |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 62 2015; 421 2000; 42 2006; 7 1975 2011; 17 1985; 22 2017; 311 14 2005; 19 2010; 26 2007; 359 2005; 221 2014; 34B 2004; 57 1987 2008; 24 2016 2015 1982 2013 2012; 7 2007; 1 2007; 22 1989 2008; 150 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 Davis PJ (e_1_2_8_2_1) 1975 e_1_2_8_27_1 Qaisar S (e_1_2_8_22_1) 2012; 7 Gürlebeck K (e_1_2_8_10_1) 1989 Micchelli CA (e_1_2_8_12_1) 2006; 7 Schuster A (e_1_2_8_17_1) 2000; 42 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_15_1 Brackx F (e_1_2_8_14_1) 1982 e_1_2_8_16_1 Daubechies I (e_1_2_8_29_1); 14 e_1_2_8_11_1 e_1_2_8_30_1 |
References_xml | – volume: 22 start-page: 43 year: 2007 end-page: 60 article-title: Multi‐frame representations in linear inverse problems with mixed multi‐constraints publication-title: Appl Comput Harmon Anal – start-page: 3520 end-page: 3527 – volume: 57 start-page: 1413 year: 2004 end-page: 1541 article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint publication-title: Comm Pure Appl Math – volume: 34B start-page: 629 year: 2014 end-page: 638 article-title: Pseudohyperbolic metric and uniformly discrete sequences in the real unit ball publication-title: Acta Math Sci – year: 1987 – year: 1989 – year: 1975 – volume: 17 start-page: 755 year: 2011 end-page: 776 article-title: Hyperbolic wavelets and multiresolution in publication-title: J Fourier Anal Appl – volume: 22 start-page: 1107 issue: 6 year: 1985 end-page: 1115 article-title: Icosahedral discretization of the two‐sphere publication-title: SIAM J Numer Anal – volume: 62 start-page: 1364 year: 2017 end-page: 1373 article-title: Three‐dimensional interpolation with monogenic polynomials publication-title: Complex Variables Elliptic Equ – volume: 359 start-page: 63 issue: 1 year: 2007 end-page: 76 article-title: The pseudohyperbolic metric and Bergman spaces in the ball publication-title: Trans Amer Math Soc – year: 2016 – volume: 311 start-page: 342 year: 2017 end-page: 353 article-title: Interpolation in reproducing kernel Hilbert spaces based on random subdivision schemes publication-title: J Comput Appl Math – volume: 19 start-page: 1 issue: 1 year: 2005 end-page: 16 article-title: Variational image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising publication-title: Appl Comput Harmon Anal – volume: 421 start-page: 567 year: 2015 end-page: 590 article-title: Polynomial interpolation over quaternions publication-title: J Math Anal Appl – volume: 150 start-page: 1 year: 2008 end-page: 51 article-title: On some iterative concepts for image restoration publication-title: Adv Imaging Electron Phys – volume: 24 start-page: 065013 issue: 6 year: 2008 article-title: A compressive Landweber iteration for solving Ill‐posed inverse problems publication-title: Inverse Probl – volume: 26 start-page: 025007 year: 2010 article-title: Accelerated projected steepest descent method for nonlinear inverse problems with sparsity constraints publication-title: Inverse Prob – volume: 14 start-page: 764 issue: 5‐6 end-page: 792 article-title: Accelerated projected gradient methods for linear inverse problems with sparsity constraints publication-title: J Fourier Anal Appl – year: 1982 – volume: 1 start-page: 29 issue: 1 year: 2007 end-page: 46 article-title: Iteratively solving linear inverse problems with general convex constraints publication-title: Inverse Prob Imaging – volume: 221 start-page: 122 year: 2005 end-page: 149 article-title: Rational hyperholomorphic functions in publication-title: J Funct Anal – year: 2015 – volume: 7 start-page: 831 issue: 17 year: 2012 end-page: 838 article-title: Distribution for the standard eigenvalues of quaternionic matrices publication-title: Int Math Forum – volume: 42 start-page: 347 issue: 4 year: 2000 end-page: 367 article-title: On Seip's description of sampling sequences for Bergman spaces publication-title: Complex Variables – volume: 7 start-page: 2651 year: 2006 end-page: 2667 article-title: Universal kernels publication-title: J Mach Learn Res – year: 2013 – volume-title: Quaternionic Analysis and Elliptic Boundary Value Problems year: 1989 ident: e_1_2_8_10_1 doi: 10.1515/9783112576182 contributor: fullname: Gürlebeck K – volume: 7 start-page: 831 issue: 17 year: 2012 ident: e_1_2_8_22_1 article-title: Distribution for the standard eigenvalues of quaternionic matrices publication-title: Int Math Forum contributor: fullname: Qaisar S – ident: e_1_2_8_16_1 doi: 10.1090/S0002-9947-06-04064-5 – volume: 42 start-page: 347 issue: 4 year: 2000 ident: e_1_2_8_17_1 article-title: On Seip's description of sampling sequences for Bergman spaces publication-title: Complex Variables contributor: fullname: Schuster A – ident: e_1_2_8_19_1 doi: 10.1137/0722066 – ident: e_1_2_8_23_1 doi: 10.1002/cpa.20042 – ident: e_1_2_8_27_1 doi: 10.1016/j.acha.2006.05.003 – ident: e_1_2_8_7_1 doi: 10.1016/j.jfa.2004.07.012 – ident: e_1_2_8_11_1 doi: 10.1080/17476933.2016.1250896 – volume-title: Interpolation and Approximation year: 1975 ident: e_1_2_8_2_1 contributor: fullname: Davis PJ – volume: 14 start-page: 764 issue: 5 ident: e_1_2_8_29_1 article-title: Accelerated projected gradient methods for linear inverse problems with sparsity constraints publication-title: J Fourier Anal Appl contributor: fullname: Daubechies I – ident: e_1_2_8_3_1 doi: 10.1007/978-1-4612-4814-9 – ident: e_1_2_8_21_1 – ident: e_1_2_8_5_1 – ident: e_1_2_8_24_1 doi: 10.1016/j.acha.2004.12.004 – ident: e_1_2_8_15_1 doi: 10.1007/s00041-011-9169-2 – ident: e_1_2_8_18_1 doi: 10.1016/S0252-9602(14)60035-7 – ident: e_1_2_8_4_1 doi: 10.1016/j.jmaa.2014.07.028 – volume: 7 start-page: 2651 year: 2006 ident: e_1_2_8_12_1 article-title: Universal kernels publication-title: J Mach Learn Res contributor: fullname: Micchelli CA – ident: e_1_2_8_28_1 doi: 10.1088/0266-5611/26/2/025007 – ident: e_1_2_8_8_1 doi: 10.1007/978-3-0348-0667-1_14 – ident: e_1_2_8_20_1 doi: 10.1016/j.cam.2016.08.002 – ident: e_1_2_8_9_1 – ident: e_1_2_8_25_1 doi: 10.3934/ipi.2007.1.29 – ident: e_1_2_8_30_1 doi: 10.1088/0266-5611/24/6/065013 – ident: e_1_2_8_26_1 doi: 10.1016/S1076-5670(07)00001-8 – ident: e_1_2_8_6_1 doi: 10.1007/978-3-319-42514-6 – volume-title: Clifford Analysis year: 1982 ident: e_1_2_8_14_1 contributor: fullname: Brackx F – ident: e_1_2_8_13_1 doi: 10.1109/IJCNN.2009.5179093 |
SSID | ssj0008112 |
Score | 2.2116215 |
Snippet | In this paper, we present results on interpolation of monogenic functions in the unit ball of
Rd+1 using reproducing kernels and randomly chosen interpolation... In this paper, we present results on interpolation of monogenic functions in the unit ball of using reproducing kernels and randomly chosen interpolation... In this paper, we present results on interpolation of monogenic functions in the unit ball of Rd+1 using reproducing kernels and randomly chosen interpolation... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 8100 |
SubjectTerms | Bergman kernel Eigenvalues Hilbert space Interpolation monogenic function reproducing kernel sparsity constrain |
Title | Interpolation of monogenic functions by using reproducing kernel Hilbert spaces |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.5271 https://www.proquest.com/docview/2151292603 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7oTnpQNxWnUyKI6CG6tGnXeRu6sctUUMFbaZtEhmyVdTv43_te0m56EARPLSUJ4eX9-F5e8hXgrI05cqTDhGNw8LnUgeZUzuFSKUw2EO-HhvY7hk-d-9fork80OTfVXRjHD7HccCPLsP6aDDxJi-sVaehkklwFnr0-jkmCvb3hPy6dcCRsoZPYYbj0hKx4Z9veddXxZyRawcvvINVGmcH2f-a3A1sltmQ9pwx1WNPTBmyOlsSsRQPqpS0X7KIknL7chQd38jB3x-JYbhjqZo6aNc4YxT2rmiz9ZHRI_o0RDybRxNL7u57hPNlwTFRZc4buCcfeg5dB__l2yMsfLfCM6oo8MZkw6LpEKhUasc5CDGwJghNhItFWiAgRVEhf-0HHwzXUWUd0FTGXKdXNUML-PtSm-VQfANNKKpHgxwgTFc-Y1AsDlQlshk2l9ptwWgk9_nB8GrFjTvZilFhMEmtCq1qNuLSoInbQBLMvHOLcyv3X_vFo1KPn4V8bHsEG4qDIMTq2oDafLfQxrBdqcWK16gtb1s03 |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46D-pB3VScTo0gooe4pU27Dk9DNyquU3CCt9A1qQzZKut28L_3vabd9CAInlpKEsLL-_G9vOQrIecNyJE97YYMgoPNhHY0w3IOE0pBsgF4341xv8N_bvZfvbsO0uTcFHdhDD_EYsMNLSPz12jguCFdX7KGjsfhtWPh_fE14YIe4v0N-2nhhj2elTqRH4YJi4uCebZh1YueP2PREmB-h6lZnOlu_2uGO2Qrh5e0bfShTFb0pEI2gwU3a1oh5dycU3qZc05f7ZJHc_gwMSfjaBJTUM8ElGsUUQx9mXbS4SfFc_JvFKkwkSkW39_1FCZK_RGyZc0oeCgYe4-8dDuDW5_l_1pgEZYWWRhHPAbvxYdCgR3ryIXYFgI-4bHHGwpAIeAKYWvbaVqwjDpq8pZC8jKlWhGI2N4npUky0QeEaiUUD-GjB7mKFcdDy3VUxKEZNBXarpKzQuryw1BqSEOebEmQmESJVUmtWA6ZG1UqDTqBBAyGuMgE_2t_GQRtfB7-teEpWfcHQU_27vsPR2QDYJFnCB5rpDSbzvUxWU3V_CRTsS9lItFf |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46QfSgbipOp0YQ0UPc0qZd523oxkQ3Byp4C12TyJCtY90O_ve-17SbHgTBU0tJQnh5P76Xl3wl5LwGOXKg_ZBBcHCZ0J5mWM5hQilINgDv-wb3OzrP9d5bcNdCmpyb_C6M5YdYbLihZaT-Gg18okx1SRo6GoXXnoPXx9cEoHDkzXfd_sILBzytdCI9DBMOFznxbM2p5j1_hqIlvvyOUtMw097-zwR3yFYGLmnTakORrOhxiWx2F8ysSYkUM2NO6GXGOH21S57s0cPYnoujsaGgnDGo1jCiGPhS3aSDT4qn5N8pEmEiTyy-f-gpzJN2hsiVNaPgn2DsPfLabr3cdlj2pwUWYWGRhSbiBnwXHwgFVqwjHyJbCOiEm4DXFEBCQBXC1a5Xd2ARdVTnDYXUZUo1IpCwu08K43isDwjVSigewscAMhXHmIHjeyri0AyaCu2WyVkudDmxhBrSUic7EiQmUWJlUslXQ2YmlUiLTSD9giEuUrn_2l92u018Hv614SlZ79-15eN97-GIbAAmCiy7Y4UUZtO5PiariZqfpAr2BQAZ0AU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpolation+of+monogenic+functions+by+using+reproducing+kernel+Hilbert+spaces&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Cerejeiras%2C+Paula&rft.au=K%C3%A4hler%2C+Uwe&rft.au=Legatiuk%2C+Dmitrii&rft.date=2018-11-30&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=41&rft.issue=17&rft.spage=8100&rft.epage=8114&rft_id=info:doi/10.1002%2Fmma.5271&rft.externalDBID=10.1002%252Fmma.5271&rft.externalDocID=MMA5271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon |