Interpolation of monogenic functions by using reproducing kernel Hilbert spaces

In this paper, we present results on interpolation of monogenic functions in the unit ball of Rd+1 using reproducing kernels and randomly chosen interpolation points. The main theoretical results are proved based on the concept of uniformly discrete sequences. Furthermore, estimates for the interpol...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences Vol. 41; no. 17; pp. 8100 - 8114
Main Authors: Cerejeiras, Paula, Kähler, Uwe, Legatiuk, Dmitrii
Format: Journal Article
Language:English
Published: Freiburg Wiley Subscription Services, Inc 30-11-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we present results on interpolation of monogenic functions in the unit ball of Rd+1 using reproducing kernels and randomly chosen interpolation points. The main theoretical results are proved based on the concept of uniformly discrete sequences. Furthermore, estimates for the interpolation error as well as for the eigenvalues of the interpolation problems are presented. Numerical results are presented in the end.
AbstractList In this paper, we present results on interpolation of monogenic functions in the unit ball of Rd+1 using reproducing kernels and randomly chosen interpolation points. The main theoretical results are proved based on the concept of uniformly discrete sequences. Furthermore, estimates for the interpolation error as well as for the eigenvalues of the interpolation problems are presented. Numerical results are presented in the end.
In this paper, we present results on interpolation of monogenic functions in the unit ball of Rd+1 using reproducing kernels and randomly chosen interpolation points. The main theoretical results are proved based on the concept of uniformly discrete sequences. Furthermore, estimates for the interpolation error as well as for the eigenvalues of the interpolation problems are presented. Numerical results are presented in the end.
In this paper, we present results on interpolation of monogenic functions in the unit ball of using reproducing kernels and randomly chosen interpolation points. The main theoretical results are proved based on the concept of uniformly discrete sequences. Furthermore, estimates for the interpolation error as well as for the eigenvalues of the interpolation problems are presented. Numerical results are presented in the end.
Author Cerejeiras, Paula
Legatiuk, Dmitrii
Kähler, Uwe
Author_xml – sequence: 1
  givenname: Paula
  orcidid: 0000-0001-7667-4595
  surname: Cerejeiras
  fullname: Cerejeiras, Paula
  organization: Universidade de Aveiro
– sequence: 2
  givenname: Uwe
  orcidid: 0000-0002-9066-1819
  surname: Kähler
  fullname: Kähler, Uwe
  organization: Universidade de Aveiro
– sequence: 3
  givenname: Dmitrii
  orcidid: 0000-0002-0028-5793
  surname: Legatiuk
  fullname: Legatiuk, Dmitrii
  email: dmitrii.legatiuk@uni‐weimar.de
  organization: Bauhaus‐Universität Weimar
BookMark eNp1kE1rwzAMhs3oYG032E8w7LJLOsnOR3MsZR-Fll62s0ltpaRL7MxOGP33S9Zdd5IQD5LeZ8Ym1lli7B5hgQDiqWmKRSIyvGJThDyPMM7SCZsCZhDFAuMbNgvhBABLRDFl-43tyLeuLrrKWe5K3jjrjmQrzcve6nEa-OHM-1DZI_fUemd6Pfaf5C3V_K2qD-Q7HtpCU7hl12VRB7r7q3P28fL8vn6LtvvXzXq1jbRMAKOi1FgKzPEQG4gF6VSCLCBNsFwimETKHCGWJJNMGIOkM8xNki7RmFwPUeScPVz2Dv989RQ6dXK9t8NJJTBBkYsU5EA9XijtXQieStX6qin8WSGoUZcadKlR14BGF_S7qun8L6d2u9Uv_wPyj2yR
Cites_doi 10.1515/9783112576182
10.1090/S0002-9947-06-04064-5
10.1137/0722066
10.1002/cpa.20042
10.1016/j.acha.2006.05.003
10.1016/j.jfa.2004.07.012
10.1080/17476933.2016.1250896
10.1007/978-1-4612-4814-9
10.1016/j.acha.2004.12.004
10.1007/s00041-011-9169-2
10.1016/S0252-9602(14)60035-7
10.1016/j.jmaa.2014.07.028
10.1088/0266-5611/26/2/025007
10.1007/978-3-0348-0667-1_14
10.1016/j.cam.2016.08.002
10.3934/ipi.2007.1.29
10.1088/0266-5611/24/6/065013
10.1016/S1076-5670(07)00001-8
10.1007/978-3-319-42514-6
10.1109/IJCNN.2009.5179093
ContentType Journal Article
Copyright 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.5271
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 8114
ExternalDocumentID 10_1002_mma_5271
MMA5271
Genre article
GrantInformation_xml – fundername: ERASMUS+ Strategic Partnership
  funderid: 2016-1-DE01-KA203-002905
– fundername: DAAD-CRUP
  funderid: ref. A-15/17
– fundername: Portuguese Foundation for Science and Technology
  funderid: UID/MAT/0416/2013
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMNL
AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c3501-afc1f2191b4d042ec6303a0651f810d53391043e3572dd1ec719d5681dd9c1703
IEDL.DBID 33P
ISSN 0170-4214
IngestDate Thu Oct 10 17:05:57 EDT 2024
Fri Nov 22 00:48:23 EST 2024
Sat Aug 24 00:55:06 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3501-afc1f2191b4d042ec6303a0651f810d53391043e3572dd1ec719d5681dd9c1703
ORCID 0000-0001-7667-4595
0000-0002-9066-1819
0000-0002-0028-5793
OpenAccessLink http://hdl.handle.net/10773/24726
PQID 2151292603
PQPubID 1016386
PageCount 15
ParticipantIDs proquest_journals_2151292603
crossref_primary_10_1002_mma_5271
wiley_primary_10_1002_mma_5271_MMA5271
PublicationCentury 2000
PublicationDate 30 November 2018
PublicationDateYYYYMMDD 2018-11-30
PublicationDate_xml – month: 11
  year: 2018
  text: 30 November 2018
  day: 30
PublicationDecade 2010
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 62
2015; 421
2000; 42
2006; 7
1975
2011; 17
1985; 22
2017; 311
14
2005; 19
2010; 26
2007; 359
2005; 221
2014; 34B
2004; 57
1987
2008; 24
2016
2015
1982
2013
2012; 7
2007; 1
2007; 22
1989
2008; 150
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
Davis PJ (e_1_2_8_2_1) 1975
e_1_2_8_27_1
Qaisar S (e_1_2_8_22_1) 2012; 7
Gürlebeck K (e_1_2_8_10_1) 1989
Micchelli CA (e_1_2_8_12_1) 2006; 7
Schuster A (e_1_2_8_17_1) 2000; 42
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
Brackx F (e_1_2_8_14_1) 1982
e_1_2_8_16_1
Daubechies I (e_1_2_8_29_1); 14
e_1_2_8_11_1
e_1_2_8_30_1
References_xml – volume: 22
  start-page: 43
  year: 2007
  end-page: 60
  article-title: Multi‐frame representations in linear inverse problems with mixed multi‐constraints
  publication-title: Appl Comput Harmon Anal
– start-page: 3520
  end-page: 3527
– volume: 57
  start-page: 1413
  year: 2004
  end-page: 1541
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Comm Pure Appl Math
– volume: 34B
  start-page: 629
  year: 2014
  end-page: 638
  article-title: Pseudohyperbolic metric and uniformly discrete sequences in the real unit ball
  publication-title: Acta Math Sci
– year: 1987
– year: 1989
– year: 1975
– volume: 17
  start-page: 755
  year: 2011
  end-page: 776
  article-title: Hyperbolic wavelets and multiresolution in
  publication-title: J Fourier Anal Appl
– volume: 22
  start-page: 1107
  issue: 6
  year: 1985
  end-page: 1115
  article-title: Icosahedral discretization of the two‐sphere
  publication-title: SIAM J Numer Anal
– volume: 62
  start-page: 1364
  year: 2017
  end-page: 1373
  article-title: Three‐dimensional interpolation with monogenic polynomials
  publication-title: Complex Variables Elliptic Equ
– volume: 359
  start-page: 63
  issue: 1
  year: 2007
  end-page: 76
  article-title: The pseudohyperbolic metric and Bergman spaces in the ball
  publication-title: Trans Amer Math Soc
– year: 2016
– volume: 311
  start-page: 342
  year: 2017
  end-page: 353
  article-title: Interpolation in reproducing kernel Hilbert spaces based on random subdivision schemes
  publication-title: J Comput Appl Math
– volume: 19
  start-page: 1
  issue: 1
  year: 2005
  end-page: 16
  article-title: Variational image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising
  publication-title: Appl Comput Harmon Anal
– volume: 421
  start-page: 567
  year: 2015
  end-page: 590
  article-title: Polynomial interpolation over quaternions
  publication-title: J Math Anal Appl
– volume: 150
  start-page: 1
  year: 2008
  end-page: 51
  article-title: On some iterative concepts for image restoration
  publication-title: Adv Imaging Electron Phys
– volume: 24
  start-page: 065013
  issue: 6
  year: 2008
  article-title: A compressive Landweber iteration for solving Ill‐posed inverse problems
  publication-title: Inverse Probl
– volume: 26
  start-page: 025007
  year: 2010
  article-title: Accelerated projected steepest descent method for nonlinear inverse problems with sparsity constraints
  publication-title: Inverse Prob
– volume: 14
  start-page: 764
  issue: 5‐6
  end-page: 792
  article-title: Accelerated projected gradient methods for linear inverse problems with sparsity constraints
  publication-title: J Fourier Anal Appl
– year: 1982
– volume: 1
  start-page: 29
  issue: 1
  year: 2007
  end-page: 46
  article-title: Iteratively solving linear inverse problems with general convex constraints
  publication-title: Inverse Prob Imaging
– volume: 221
  start-page: 122
  year: 2005
  end-page: 149
  article-title: Rational hyperholomorphic functions in
  publication-title: J Funct Anal
– year: 2015
– volume: 7
  start-page: 831
  issue: 17
  year: 2012
  end-page: 838
  article-title: Distribution for the standard eigenvalues of quaternionic matrices
  publication-title: Int Math Forum
– volume: 42
  start-page: 347
  issue: 4
  year: 2000
  end-page: 367
  article-title: On Seip's description of sampling sequences for Bergman spaces
  publication-title: Complex Variables
– volume: 7
  start-page: 2651
  year: 2006
  end-page: 2667
  article-title: Universal kernels
  publication-title: J Mach Learn Res
– year: 2013
– volume-title: Quaternionic Analysis and Elliptic Boundary Value Problems
  year: 1989
  ident: e_1_2_8_10_1
  doi: 10.1515/9783112576182
  contributor:
    fullname: Gürlebeck K
– volume: 7
  start-page: 831
  issue: 17
  year: 2012
  ident: e_1_2_8_22_1
  article-title: Distribution for the standard eigenvalues of quaternionic matrices
  publication-title: Int Math Forum
  contributor:
    fullname: Qaisar S
– ident: e_1_2_8_16_1
  doi: 10.1090/S0002-9947-06-04064-5
– volume: 42
  start-page: 347
  issue: 4
  year: 2000
  ident: e_1_2_8_17_1
  article-title: On Seip's description of sampling sequences for Bergman spaces
  publication-title: Complex Variables
  contributor:
    fullname: Schuster A
– ident: e_1_2_8_19_1
  doi: 10.1137/0722066
– ident: e_1_2_8_23_1
  doi: 10.1002/cpa.20042
– ident: e_1_2_8_27_1
  doi: 10.1016/j.acha.2006.05.003
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jfa.2004.07.012
– ident: e_1_2_8_11_1
  doi: 10.1080/17476933.2016.1250896
– volume-title: Interpolation and Approximation
  year: 1975
  ident: e_1_2_8_2_1
  contributor:
    fullname: Davis PJ
– volume: 14
  start-page: 764
  issue: 5
  ident: e_1_2_8_29_1
  article-title: Accelerated projected gradient methods for linear inverse problems with sparsity constraints
  publication-title: J Fourier Anal Appl
  contributor:
    fullname: Daubechies I
– ident: e_1_2_8_3_1
  doi: 10.1007/978-1-4612-4814-9
– ident: e_1_2_8_21_1
– ident: e_1_2_8_5_1
– ident: e_1_2_8_24_1
  doi: 10.1016/j.acha.2004.12.004
– ident: e_1_2_8_15_1
  doi: 10.1007/s00041-011-9169-2
– ident: e_1_2_8_18_1
  doi: 10.1016/S0252-9602(14)60035-7
– ident: e_1_2_8_4_1
  doi: 10.1016/j.jmaa.2014.07.028
– volume: 7
  start-page: 2651
  year: 2006
  ident: e_1_2_8_12_1
  article-title: Universal kernels
  publication-title: J Mach Learn Res
  contributor:
    fullname: Micchelli CA
– ident: e_1_2_8_28_1
  doi: 10.1088/0266-5611/26/2/025007
– ident: e_1_2_8_8_1
  doi: 10.1007/978-3-0348-0667-1_14
– ident: e_1_2_8_20_1
  doi: 10.1016/j.cam.2016.08.002
– ident: e_1_2_8_9_1
– ident: e_1_2_8_25_1
  doi: 10.3934/ipi.2007.1.29
– ident: e_1_2_8_30_1
  doi: 10.1088/0266-5611/24/6/065013
– ident: e_1_2_8_26_1
  doi: 10.1016/S1076-5670(07)00001-8
– ident: e_1_2_8_6_1
  doi: 10.1007/978-3-319-42514-6
– volume-title: Clifford Analysis
  year: 1982
  ident: e_1_2_8_14_1
  contributor:
    fullname: Brackx F
– ident: e_1_2_8_13_1
  doi: 10.1109/IJCNN.2009.5179093
SSID ssj0008112
Score 2.2116215
Snippet In this paper, we present results on interpolation of monogenic functions in the unit ball of Rd+1 using reproducing kernels and randomly chosen interpolation...
In this paper, we present results on interpolation of monogenic functions in the unit ball of using reproducing kernels and randomly chosen interpolation...
In this paper, we present results on interpolation of monogenic functions in the unit ball of Rd+1 using reproducing kernels and randomly chosen interpolation...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 8100
SubjectTerms Bergman kernel
Eigenvalues
Hilbert space
Interpolation
monogenic function
reproducing kernel
sparsity constrain
Title Interpolation of monogenic functions by using reproducing kernel Hilbert spaces
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.5271
https://www.proquest.com/docview/2151292603
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7oTnpQNxWnUyKI6CG6tGnXeRu6sctUUMFbaZtEhmyVdTv43_te0m56EARPLSUJ4eX9-F5e8hXgrI05cqTDhGNw8LnUgeZUzuFSKUw2EO-HhvY7hk-d-9fork80OTfVXRjHD7HccCPLsP6aDDxJi-sVaehkklwFnr0-jkmCvb3hPy6dcCRsoZPYYbj0hKx4Z9veddXxZyRawcvvINVGmcH2f-a3A1sltmQ9pwx1WNPTBmyOlsSsRQPqpS0X7KIknL7chQd38jB3x-JYbhjqZo6aNc4YxT2rmiz9ZHRI_o0RDybRxNL7u57hPNlwTFRZc4buCcfeg5dB__l2yMsfLfCM6oo8MZkw6LpEKhUasc5CDGwJghNhItFWiAgRVEhf-0HHwzXUWUd0FTGXKdXNUML-PtSm-VQfANNKKpHgxwgTFc-Y1AsDlQlshk2l9ptwWgk9_nB8GrFjTvZilFhMEmtCq1qNuLSoInbQBLMvHOLcyv3X_vFo1KPn4V8bHsEG4qDIMTq2oDafLfQxrBdqcWK16gtb1s03
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46D-pB3VScTo0gooe4pU27Dk9DNyquU3CCt9A1qQzZKut28L_3vabd9CAInlpKEsLL-_G9vOQrIecNyJE97YYMgoPNhHY0w3IOE0pBsgF4341xv8N_bvZfvbsO0uTcFHdhDD_EYsMNLSPz12jguCFdX7KGjsfhtWPh_fE14YIe4v0N-2nhhj2elTqRH4YJi4uCebZh1YueP2PREmB-h6lZnOlu_2uGO2Qrh5e0bfShTFb0pEI2gwU3a1oh5dycU3qZc05f7ZJHc_gwMSfjaBJTUM8ElGsUUQx9mXbS4SfFc_JvFKkwkSkW39_1FCZK_RGyZc0oeCgYe4-8dDuDW5_l_1pgEZYWWRhHPAbvxYdCgR3ryIXYFgI-4bHHGwpAIeAKYWvbaVqwjDpq8pZC8jKlWhGI2N4npUky0QeEaiUUD-GjB7mKFcdDy3VUxKEZNBXarpKzQuryw1BqSEOebEmQmESJVUmtWA6ZG1UqDTqBBAyGuMgE_2t_GQRtfB7-teEpWfcHQU_27vsPR2QDYJFnCB5rpDSbzvUxWU3V_CRTsS9lItFf
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46QfSgbipOp0YQ0UPc0qZd523oxkQ3Byp4C12TyJCtY90O_ve-17SbHgTBU0tJQnh5P76Xl3wl5LwGOXKg_ZBBcHCZ0J5mWM5hQilINgDv-wb3OzrP9d5bcNdCmpyb_C6M5YdYbLihZaT-Gg18okx1SRo6GoXXnoPXx9cEoHDkzXfd_sILBzytdCI9DBMOFznxbM2p5j1_hqIlvvyOUtMw097-zwR3yFYGLmnTakORrOhxiWx2F8ysSYkUM2NO6GXGOH21S57s0cPYnoujsaGgnDGo1jCiGPhS3aSDT4qn5N8pEmEiTyy-f-gpzJN2hsiVNaPgn2DsPfLabr3cdlj2pwUWYWGRhSbiBnwXHwgFVqwjHyJbCOiEm4DXFEBCQBXC1a5Xd2ARdVTnDYXUZUo1IpCwu08K43isDwjVSigewscAMhXHmIHjeyri0AyaCu2WyVkudDmxhBrSUic7EiQmUWJlUslXQ2YmlUiLTSD9giEuUrn_2l92u018Hv614SlZ79-15eN97-GIbAAmCiy7Y4UUZtO5PiariZqfpAr2BQAZ0AU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpolation+of+monogenic+functions+by+using+reproducing+kernel+Hilbert+spaces&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Cerejeiras%2C+Paula&rft.au=K%C3%A4hler%2C+Uwe&rft.au=Legatiuk%2C+Dmitrii&rft.date=2018-11-30&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=41&rft.issue=17&rft.spage=8100&rft.epage=8114&rft_id=info:doi/10.1002%2Fmma.5271&rft.externalDBID=10.1002%252Fmma.5271&rft.externalDocID=MMA5271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon