Achieving Sustainable and Stable Potassium‐Ion Batteries by Leaf‐Bioinspired Nanofluidic Flow

In nature, living systems have evolved integrated structures, matching optimized nanofluidics to adapt to external conditions. In rechargeable batteries, high‐capacity electrodes are often plagued by the crucial and universal bottleneck of dissolution and shuttle of active substance into electrolyte...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 34; no. 39; pp. e2204370 - n/a
Main Authors: Zhang, Xixue, Wu, Feng, Lv, Xiaowei, Xu, Liqianyun, Huang, Ruling, Chen, Renjie, Li, Li
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01-09-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In nature, living systems have evolved integrated structures, matching optimized nanofluidics to adapt to external conditions. In rechargeable batteries, high‐capacity electrodes are often plagued by the crucial and universal bottleneck of dissolution and shuttle of active substance into electrolyte, posing obstacles of inevitable capacity degradation. Introducing the concept of intelligent nanofluidics to electrodes, a leaf‐bioinspired electrode configuration with hierarchical architecture to tackle this problem is proposed. This integrated structure with fine‐tuned surface pores and unobstructed interior porous media, can spatially control the anisotropic nanofluidic flux, in an efficient and self‐protectable way: tailoring the outflow across the electrode's surface and free transport in interior, to ensure speedy and stable energy conversion. As proofs of concept, applications of sustainable electrodes rejuvenated from fallen leaf and spent commercial batteries, are designed with leaf‐bioinspired architecture. Both KCoS2 and KS battery systems show advanced steady cycling with effectively mitigated shuttle issues in this smart architecture (0.15% and 0.21% capacity decay per cycle), even at high areal mass loading, when compared with open porous structure (0.60% and 0.39%). This work may pave a new way from a biomimetic view to integrated electrode engineering with regulated surface shielding to conquer the universal dissolution–shuttle problems facing high‐capacity materials. A leaf‐bioinspired electrode configuration with nanofluidic flow is proposed. When applied in KCoS2 and KS battery systems, the designed sustainable electrodes show advanced steady cycling stability and rapid energy conversion. This biomimetic integrated electrode engineering can enable anisotropic electrolyte flux to achieve regulated surface shielding, which may be a universal way to tackle the shuttle problems facing high‐capacity electrodes.
AbstractList Abstract In nature, living systems have evolved integrated structures, matching optimized nanofluidics to adapt to external conditions. In rechargeable batteries, high‐capacity electrodes are often plagued by the crucial and universal bottleneck of dissolution and shuttle of active substance into electrolyte, posing obstacles of inevitable capacity degradation. Introducing the concept of intelligent nanofluidics to electrodes, a leaf‐bioinspired electrode configuration with hierarchical architecture to tackle this problem is proposed. This integrated structure with fine‐tuned surface pores and unobstructed interior porous media, can spatially control the anisotropic nanofluidic flux, in an efficient and self‐protectable way: tailoring the outflow across the electrode's surface and free transport in interior, to ensure speedy and stable energy conversion. As proofs of concept, applications of sustainable electrodes rejuvenated from fallen leaf and spent commercial batteries, are designed with leaf‐bioinspired architecture. Both KCoS 2 and KS battery systems show advanced steady cycling with effectively mitigated shuttle issues in this smart architecture (0.15% and 0.21% capacity decay per cycle), even at high areal mass loading, when compared with open porous structure (0.60% and 0.39%). This work may pave a new way from a biomimetic view to integrated electrode engineering with regulated surface shielding to conquer the universal dissolution–shuttle problems facing high‐capacity materials.
In nature, living systems have evolved integrated structures, matching optimized nanofluidics to adapt to external conditions. In rechargeable batteries, high‐capacity electrodes are often plagued by the crucial and universal bottleneck of dissolution and shuttle of active substance into electrolyte, posing obstacles of inevitable capacity degradation. Introducing the concept of intelligent nanofluidics to electrodes, a leaf‐bioinspired electrode configuration with hierarchical architecture to tackle this problem is proposed. This integrated structure with fine‐tuned surface pores and unobstructed interior porous media, can spatially control the anisotropic nanofluidic flux, in an efficient and self‐protectable way: tailoring the outflow across the electrode's surface and free transport in interior, to ensure speedy and stable energy conversion. As proofs of concept, applications of sustainable electrodes rejuvenated from fallen leaf and spent commercial batteries, are designed with leaf‐bioinspired architecture. Both KCoS2 and KS battery systems show advanced steady cycling with effectively mitigated shuttle issues in this smart architecture (0.15% and 0.21% capacity decay per cycle), even at high areal mass loading, when compared with open porous structure (0.60% and 0.39%). This work may pave a new way from a biomimetic view to integrated electrode engineering with regulated surface shielding to conquer the universal dissolution–shuttle problems facing high‐capacity materials.
In nature, living systems have evolved integrated structures, matching optimized nanofluidics to adapt to external conditions. In rechargeable batteries, high‐capacity electrodes are often plagued by the crucial and universal bottleneck of dissolution and shuttle of active substance into electrolyte, posing obstacles of inevitable capacity degradation. Introducing the concept of intelligent nanofluidics to electrodes, a leaf‐bioinspired electrode configuration with hierarchical architecture to tackle this problem is proposed. This integrated structure with fine‐tuned surface pores and unobstructed interior porous media, can spatially control the anisotropic nanofluidic flux, in an efficient and self‐protectable way: tailoring the outflow across the electrode's surface and free transport in interior, to ensure speedy and stable energy conversion. As proofs of concept, applications of sustainable electrodes rejuvenated from fallen leaf and spent commercial batteries, are designed with leaf‐bioinspired architecture. Both KCoS2 and KS battery systems show advanced steady cycling with effectively mitigated shuttle issues in this smart architecture (0.15% and 0.21% capacity decay per cycle), even at high areal mass loading, when compared with open porous structure (0.60% and 0.39%). This work may pave a new way from a biomimetic view to integrated electrode engineering with regulated surface shielding to conquer the universal dissolution–shuttle problems facing high‐capacity materials. A leaf‐bioinspired electrode configuration with nanofluidic flow is proposed. When applied in KCoS2 and KS battery systems, the designed sustainable electrodes show advanced steady cycling stability and rapid energy conversion. This biomimetic integrated electrode engineering can enable anisotropic electrolyte flux to achieve regulated surface shielding, which may be a universal way to tackle the shuttle problems facing high‐capacity electrodes.
Author Wu, Feng
Li, Li
Xu, Liqianyun
Lv, Xiaowei
Chen, Renjie
Zhang, Xixue
Huang, Ruling
Author_xml – sequence: 1
  givenname: Xixue
  surname: Zhang
  fullname: Zhang, Xixue
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Feng
  surname: Wu
  fullname: Wu, Feng
  organization: Guangzhou Institute of Energy Testing
– sequence: 3
  givenname: Xiaowei
  surname: Lv
  fullname: Lv, Xiaowei
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Liqianyun
  surname: Xu
  fullname: Xu, Liqianyun
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Ruling
  surname: Huang
  fullname: Huang, Ruling
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Renjie
  orcidid: 0000-0002-7001-2926
  surname: Chen
  fullname: Chen, Renjie
  email: chenrj@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Li
  surname: Li
  fullname: Li, Li
  email: lily863@bit.edu.cn
  organization: Guangzhou Institute of Energy Testing
BookMark eNqFkE1Lw0AQhhdRsFWvngNevKTOfiXdY61WC_UDqucw2Wx0Jd2t2cTSmz_B3-gvMVpR8OJphuF5Z4anT7add4aQQwoDCsBOsFjggAFjIHgKW6RHJaOxACW3SQ8Ul7FKxHCX9EN4AgCVQNIjONKP1rxY9xDN29CgdZhXJkJXRPPmq731DYZg28X769vUu-gUm8bU1oQoX0czg2U3P7XeurC0tSmia3S-rFpbWB1NKr_aJzslVsEcfNc9cj85vxtfxrObi-l4NIs1lwBxquiQIc1LwyRIM5SqLBElRakRNE-EUZTrtACeF5gWnDFMEiXylFHJudB8jxxv9i5r_9ya0GQLG7SpKnTGtyFjKXBBuzPQoUd_0Cff1q77rqPoUCSUK9FRgw2lax9CbcpsWdsF1uuMQvZpPPs0nv0Y7wJqE1jZyqz_obPR2dXoN_sBjSGH1w
CitedBy_id crossref_primary_10_1021_acsenergylett_3c00529
crossref_primary_10_20517_energymater_2023_36
crossref_primary_10_1002_anie_202404332
crossref_primary_10_1007_s12274_023_6102_3
crossref_primary_10_1021_acsnano_4c02547
crossref_primary_10_1002_aenm_202203277
crossref_primary_10_1002_smll_202301237
crossref_primary_10_1039_D3CS01043K
crossref_primary_10_1002_ange_202404332
crossref_primary_10_1021_acs_langmuir_3c03679
crossref_primary_10_1016_j_nanoen_2023_108913
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1016_j_jhazmat_2023_131134
crossref_primary_10_1039_D3CY01298K
crossref_primary_10_1002_aenm_202204376
crossref_primary_10_1002_advs_202400405
crossref_primary_10_3390_biomimetics8020140
Cites_doi 10.1021/acs.jpcc.8b11069
10.1002/anie.202108882
10.1002/anie.201908542
10.1002/adma.202102471
10.1016/j.chempr.2021.06.008
10.1002/adma.202006897
10.1002/anie.202104003
10.1038/s41467-021-27728-0
10.1002/anie.202116048
10.1007/s11426-021-1057-3
10.1038/s41563-020-0625-8
10.1039/D0EE02917C
10.1002/adma.202106876
10.1002/adma.202101413
10.1039/D1EE03924E
10.1016/j.wasman.2017.10.028
10.1021/jacs.8b02178
10.1002/anie.202102368
10.1002/anie.202103052
10.1002/adma.202100272
10.1002/adma.202106370
10.1002/adma.202101006
10.1038/s41565-020-00788-x
10.1021/ja409508q
10.1038/s41586-021-03603-2
10.1039/D0EE02919J
10.1002/anie.202117661
10.1002/adma.202100837
10.1093/nsr/nwab055
10.1038/s41467-020-18820-y
10.1002/adma.201806664
10.1002/adma.202001894
10.1021/acs.nanolett.5b04166
10.1002/adma.202108621
10.1002/anie.202100654
10.1002/smll.202105897
10.1021/nl200658a
10.1002/adma.201103392
10.1002/anie.202004424
10.1002/adma.202005993
10.1038/s41565-020-00797-w
10.1002/eom2.12038
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202204370
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202204370
ADMA202204370
Genre article
GrantInformation_xml – fundername: S&T Major Project of Inner Mongolia Autonomous Region in China
  funderid: 2020ZD0018
– fundername: National Natural Science Foundation of China
  funderid: 51972030; 51772030
– fundername: Beijing Outstanding Young Scientists Program
  funderid: BJJWZYJH01201910007023
– fundername: Guangdong Key Laboratory of Battery Safety
  funderid: 2019B121203008
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
AAYXX
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMNL
JG9
7X8
ID FETCH-LOGICAL-c3500-79182a1bfe2505e859ffaa51a5ca0c364e913c7d03bda7d322a6694b7215334c3
IEDL.DBID 33P
ISSN 0935-9648
IngestDate Fri Aug 16 09:47:05 EDT 2024
Tue Nov 19 06:45:49 EST 2024
Thu Sep 26 16:09:03 EDT 2024
Sat Aug 24 00:58:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3500-79182a1bfe2505e859ffaa51a5ca0c364e913c7d03bda7d322a6694b7215334c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7001-2926
PQID 2718461394
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2703417910
proquest_journals_2718461394
crossref_primary_10_1002_adma_202204370
wiley_primary_10_1002_adma_202204370_ADMA202204370
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2021; 7
2021; 64
2018; 140
2019; 31
2019; 58
2020; 59
2011; 11
2020; 11
2020; 32
2016; 16
2019; 123
2020; 19
2021; 14
2021; 16
2020; 2
2021; 33
2022; 61
2022; 34
2022; 13
2013; 135
2022; 15
2021; 595
2018; 71
2021; 60
2012; 24
2022; 18
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 60
  year: 2021
  publication-title: Angew.Chem., Int. Ed.
– volume: 58
  year: 2019
  publication-title: Angew.Chem. Int. Ed.
– volume: 16
  start-page: 166
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  year: 2020
  publication-title: EcoMat.
– volume: 71
  start-page: 362
  year: 2018
  publication-title: Waste Manage.
– volume: 7
  start-page: 2684
  year: 2021
  publication-title: Chem
– volume: 140
  start-page: 7127
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2021
  publication-title: Natl. Sci. Rev.
– volume: 15
  start-page: 1529
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 595
  start-page: 58
  year: 2021
  publication-title: Nature
– volume: 64
  start-page: 1401
  year: 2021
  publication-title: Sci. China. Chem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 519
  year: 2016
  publication-title: Nano Lett.
– volume: 19
  start-page: 254
  year: 2020
  publication-title: Nat. Mater.
– volume: 11
  start-page: 5025
  year: 2020
  publication-title: Nat. Commun.
– volume: 13
  start-page: 125
  year: 2022
  publication-title: Nat. Commun.
– volume: 123
  start-page: 2775
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 24
  start-page: 1176
  year: 2012
  publication-title: Adv. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 16
  start-page: 77
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 14
  start-page: 2186
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 424
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 2644
  year: 2011
  publication-title: Nano Lett.
– ident: e_1_2_7_41_1
  doi: 10.1021/acs.jpcc.8b11069
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.202108882
– ident: e_1_2_7_36_1
  doi: 10.1002/anie.201908542
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.202102471
– ident: e_1_2_7_31_1
  doi: 10.1016/j.chempr.2021.06.008
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.202006897
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.202104003
– ident: e_1_2_7_5_1
  doi: 10.1038/s41467-021-27728-0
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.202116048
– ident: e_1_2_7_38_1
  doi: 10.1007/s11426-021-1057-3
– ident: e_1_2_7_19_1
  doi: 10.1038/s41563-020-0625-8
– ident: e_1_2_7_22_1
  doi: 10.1039/D0EE02917C
– ident: e_1_2_7_21_1
  doi: 10.1002/adma.202106876
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.202101413
– ident: e_1_2_7_20_1
  doi: 10.1039/D1EE03924E
– ident: e_1_2_7_35_1
  doi: 10.1016/j.wasman.2017.10.028
– ident: e_1_2_7_33_1
  doi: 10.1021/jacs.8b02178
– ident: e_1_2_7_34_1
  doi: 10.1002/anie.202102368
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.202103052
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.202100272
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.202106370
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.202101006
– ident: e_1_2_7_7_1
  doi: 10.1038/s41565-020-00788-x
– ident: e_1_2_7_12_1
  doi: 10.1021/ja409508q
– ident: e_1_2_7_18_1
  doi: 10.1038/s41586-021-03603-2
– ident: e_1_2_7_32_1
  doi: 10.1039/D0EE02919J
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.202117661
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.202100837
– ident: e_1_2_7_2_1
  doi: 10.1093/nsr/nwab055
– ident: e_1_2_7_3_1
  doi: 10.1038/s41467-020-18820-y
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.201806664
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.202001894
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.nanolett.5b04166
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.202108621
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.202100654
– ident: e_1_2_7_40_1
  doi: 10.1002/smll.202105897
– ident: e_1_2_7_11_1
  doi: 10.1021/nl200658a
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201103392
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.202004424
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.202005993
– ident: e_1_2_7_1_1
  doi: 10.1038/s41565-020-00797-w
– ident: e_1_2_7_39_1
  doi: 10.1002/eom2.12038
SSID ssj0009606
Score 2.5261831
Snippet In nature, living systems have evolved integrated structures, matching optimized nanofluidics to adapt to external conditions. In rechargeable batteries,...
Abstract In nature, living systems have evolved integrated structures, matching optimized nanofluidics to adapt to external conditions. In rechargeable...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage e2204370
SubjectTerms Batteries
bioinspired materials
Biomimetics
Cobalt sulfide
Decay rate
Dissolution
Electrodes
Energy conversion
Fluidics
Materials science
nanofluidics
Nanofluids
Porous media
potassium‐ion batteries
Rechargeable batteries
spent batteries’ recycling
System effectiveness
Title Achieving Sustainable and Stable Potassium‐Ion Batteries by Leaf‐Bioinspired Nanofluidic Flow
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202204370
https://www.proquest.com/docview/2718461394
https://search.proquest.com/docview/2703417910
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsRAEG3Ukx7cxXGjBcFTMOkly3FcBgUVQQVvoXrDgCbiGMSbn-A3-iV2JTMZPQl66yydhOqqrlddqdeE7Fnv9ZVKXBDpmPsAJVJBymMVSAAmnfY64HC94_Q6ubxLj0-QJqer4m_5IboFN7SMZr5GAwc1PJiQhoJpeIMYFncmGLT7UKGp4eBXE9bduNlcE5N9QRaLdMzaGLKDn91_eqUJ1PwOWBuPM1j4_7cukvkR2qT9Vj2WyJQtl8ncNw7CFQJ9fV9YXFag15NiKgqloR6IYvOqevEIu6gfP98_zqqStpScPsKm6o2eW3D-_GFRFSUm7a2hfsKu3ENdmELTwUP1ukpuByc3R6fBaN-FQHMZhshgmTKIlLOIj2wqM-cAZARSQ6h5LGwWcZ2YkCsDifFTAsRxJpQPJrGwV_M1MlNWpV0nNEys1BHTIjJOCCGVhDixLAPgziMz3SP7Y7nnTy29Rt4SKbMchZZ3QuuRrfGw5CMzG-bMe1bhAUkmemS3u-wNBLMeUNqqxntCjtusRf4RrBmkX96U948v-t3Rxl86bZJZbLf_om2RmZfn2m6T6aGpdxoF_QKikOXk
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOEAPQHmIQEoXCYmTVXtfto-GNkpFWlVKkLhZsy_VUrBREwtx60_ob-SXsGPn0Z6QKm722mtbszs738x6viHkowtWX-vUR4lRPDgoiY4yrnQkAZj0JswBj_GOySw9_54dnyBNTrHJhen5IbYBN9SMbr1GBceA9NGONRRsRxzEMLszDV77I6FEjtUbOL_Y8e6qrrwmbvdFuRLZhrcxZkd3-9-1SzuweRuydjZn_Ow_fO1z8nQNOGnRz5B98sDVL8jeLRrClwQKc1k5jCzQ2S6fikJtacCieHjRrALIrtoff65vTpua9qycwcmm-jedOvCh_XPVVDXu2ztLw5rd-EVb2crQ8aL59Yp8G5_Mv0yidemFyHAZx0himTFItHcIkVwmc-8BZALSQGy4Ei5PuEltzLWF1IZVAZTKhQ7-JOb2Gv6aDOqmdm8IjVMnTcKMSKwXQkgtQaWO5QDcB3BmhuTTRvDlz55ho-y5lFmJQiu3QhuS0WZcyrWmLUsWjKsImCQXQ_JheznoCG58QO2aFu-JOVZaS8IjWDdK_3hTWRyfFduzt_fpdEgeT-Zn03J6ev71HXmC7f2vaSMyWF217oA8XNr2fTdb_wIlKuoF
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG7WEcQ9-F52XB8tCJ6CST_yOM46DsqqDKjgLVS_2ICbyDph2Zs_wd-4v2S7kpmMngS9JZ10Eqqrur7qSn1NyKH1Xl-pxAWRjrkPUCIVpDxWgQRg0mmvAw7XO86uk6u7dHiKNDldFX_LD9EtuKFlNPM1GviDccdz0lAwDW8Qw-LOxAftiwKxOBZx8PGcdjdudtfEbF-QxSKd0TaG7Ph1_9duaY41XyLWxuWMVj_-sWtkZQo36aDVj3XyyZYb5PMLEsJNAgP9s7C4rkCv59VUFEpDPRLFw3E18RC7qH_9e3o-r0racnL6EJuqv_TCgvPt34uqKDFrbw31M3bl7uvCFJqO7qs_W-R2dHpzchZMN14INJdhiBSWKYNIOYsAyaYycw5ARiA1hJrHwmYR14kJuTKQGD8nQBxnQvloEit7Nf9CemVV2q-EhomVOmJaRMYJIaSSECeWZQDceWim--RoJvf8oeXXyFsmZZaj0PJOaH2yMxuWfGpnjznzrlV4RJKJPjnoLnsLwbQHlLaq8Z6Q4z5rkX8EawbpjTflg-HloDvbfk-nfbI0Ho7yi_OrH9_IMja3_6XtkN7kd213ycKjqfcaXf0PcLHotA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+Sustainable+and+Stable+Potassium%E2%80%90Ion+Batteries+by+Leaf%E2%80%90Bioinspired+Nanofluidic+Flow&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Xixue&rft.au=Wu%2C+Feng&rft.au=Lv%2C+Xiaowei&rft.au=Xu%2C+Liqianyun&rft.date=2022-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=39&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202204370&rft.externalDBID=10.1002%252Fadma.202204370&rft.externalDocID=ADMA202204370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon