Achieving Sustainable and Stable Potassium‐Ion Batteries by Leaf‐Bioinspired Nanofluidic Flow
In nature, living systems have evolved integrated structures, matching optimized nanofluidics to adapt to external conditions. In rechargeable batteries, high‐capacity electrodes are often plagued by the crucial and universal bottleneck of dissolution and shuttle of active substance into electrolyte...
Saved in:
Published in: | Advanced materials (Weinheim) Vol. 34; no. 39; pp. e2204370 - n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Wiley Subscription Services, Inc
01-09-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In nature, living systems have evolved integrated structures, matching optimized nanofluidics to adapt to external conditions. In rechargeable batteries, high‐capacity electrodes are often plagued by the crucial and universal bottleneck of dissolution and shuttle of active substance into electrolyte, posing obstacles of inevitable capacity degradation. Introducing the concept of intelligent nanofluidics to electrodes, a leaf‐bioinspired electrode configuration with hierarchical architecture to tackle this problem is proposed. This integrated structure with fine‐tuned surface pores and unobstructed interior porous media, can spatially control the anisotropic nanofluidic flux, in an efficient and self‐protectable way: tailoring the outflow across the electrode's surface and free transport in interior, to ensure speedy and stable energy conversion. As proofs of concept, applications of sustainable electrodes rejuvenated from fallen leaf and spent commercial batteries, are designed with leaf‐bioinspired architecture. Both KCoS2 and KS battery systems show advanced steady cycling with effectively mitigated shuttle issues in this smart architecture (0.15% and 0.21% capacity decay per cycle), even at high areal mass loading, when compared with open porous structure (0.60% and 0.39%). This work may pave a new way from a biomimetic view to integrated electrode engineering with regulated surface shielding to conquer the universal dissolution–shuttle problems facing high‐capacity materials.
A leaf‐bioinspired electrode configuration with nanofluidic flow is proposed. When applied in KCoS2 and KS battery systems, the designed sustainable electrodes show advanced steady cycling stability and rapid energy conversion. This biomimetic integrated electrode engineering can enable anisotropic electrolyte flux to achieve regulated surface shielding, which may be a universal way to tackle the shuttle problems facing high‐capacity electrodes. |
---|---|
AbstractList | Abstract
In nature, living systems have evolved integrated structures, matching optimized nanofluidics to adapt to external conditions. In rechargeable batteries, high‐capacity electrodes are often plagued by the crucial and universal bottleneck of dissolution and shuttle of active substance into electrolyte, posing obstacles of inevitable capacity degradation. Introducing the concept of intelligent nanofluidics to electrodes, a leaf‐bioinspired electrode configuration with hierarchical architecture to tackle this problem is proposed. This integrated structure with fine‐tuned surface pores and unobstructed interior porous media, can spatially control the anisotropic nanofluidic flux, in an efficient and self‐protectable way: tailoring the outflow across the electrode's surface and free transport in interior, to ensure speedy and stable energy conversion. As proofs of concept, applications of sustainable electrodes rejuvenated from fallen leaf and spent commercial batteries, are designed with leaf‐bioinspired architecture. Both KCoS
2
and KS battery systems show advanced steady cycling with effectively mitigated shuttle issues in this smart architecture (0.15% and 0.21% capacity decay per cycle), even at high areal mass loading, when compared with open porous structure (0.60% and 0.39%). This work may pave a new way from a biomimetic view to integrated electrode engineering with regulated surface shielding to conquer the universal dissolution–shuttle problems facing high‐capacity materials. In nature, living systems have evolved integrated structures, matching optimized nanofluidics to adapt to external conditions. In rechargeable batteries, high‐capacity electrodes are often plagued by the crucial and universal bottleneck of dissolution and shuttle of active substance into electrolyte, posing obstacles of inevitable capacity degradation. Introducing the concept of intelligent nanofluidics to electrodes, a leaf‐bioinspired electrode configuration with hierarchical architecture to tackle this problem is proposed. This integrated structure with fine‐tuned surface pores and unobstructed interior porous media, can spatially control the anisotropic nanofluidic flux, in an efficient and self‐protectable way: tailoring the outflow across the electrode's surface and free transport in interior, to ensure speedy and stable energy conversion. As proofs of concept, applications of sustainable electrodes rejuvenated from fallen leaf and spent commercial batteries, are designed with leaf‐bioinspired architecture. Both KCoS2 and KS battery systems show advanced steady cycling with effectively mitigated shuttle issues in this smart architecture (0.15% and 0.21% capacity decay per cycle), even at high areal mass loading, when compared with open porous structure (0.60% and 0.39%). This work may pave a new way from a biomimetic view to integrated electrode engineering with regulated surface shielding to conquer the universal dissolution–shuttle problems facing high‐capacity materials. In nature, living systems have evolved integrated structures, matching optimized nanofluidics to adapt to external conditions. In rechargeable batteries, high‐capacity electrodes are often plagued by the crucial and universal bottleneck of dissolution and shuttle of active substance into electrolyte, posing obstacles of inevitable capacity degradation. Introducing the concept of intelligent nanofluidics to electrodes, a leaf‐bioinspired electrode configuration with hierarchical architecture to tackle this problem is proposed. This integrated structure with fine‐tuned surface pores and unobstructed interior porous media, can spatially control the anisotropic nanofluidic flux, in an efficient and self‐protectable way: tailoring the outflow across the electrode's surface and free transport in interior, to ensure speedy and stable energy conversion. As proofs of concept, applications of sustainable electrodes rejuvenated from fallen leaf and spent commercial batteries, are designed with leaf‐bioinspired architecture. Both KCoS2 and KS battery systems show advanced steady cycling with effectively mitigated shuttle issues in this smart architecture (0.15% and 0.21% capacity decay per cycle), even at high areal mass loading, when compared with open porous structure (0.60% and 0.39%). This work may pave a new way from a biomimetic view to integrated electrode engineering with regulated surface shielding to conquer the universal dissolution–shuttle problems facing high‐capacity materials. A leaf‐bioinspired electrode configuration with nanofluidic flow is proposed. When applied in KCoS2 and KS battery systems, the designed sustainable electrodes show advanced steady cycling stability and rapid energy conversion. This biomimetic integrated electrode engineering can enable anisotropic electrolyte flux to achieve regulated surface shielding, which may be a universal way to tackle the shuttle problems facing high‐capacity electrodes. |
Author | Wu, Feng Li, Li Xu, Liqianyun Lv, Xiaowei Chen, Renjie Zhang, Xixue Huang, Ruling |
Author_xml | – sequence: 1 givenname: Xixue surname: Zhang fullname: Zhang, Xixue organization: Beijing Institute of Technology – sequence: 2 givenname: Feng surname: Wu fullname: Wu, Feng organization: Guangzhou Institute of Energy Testing – sequence: 3 givenname: Xiaowei surname: Lv fullname: Lv, Xiaowei organization: Beijing Institute of Technology – sequence: 4 givenname: Liqianyun surname: Xu fullname: Xu, Liqianyun organization: Beijing Institute of Technology – sequence: 5 givenname: Ruling surname: Huang fullname: Huang, Ruling organization: Beijing Institute of Technology – sequence: 6 givenname: Renjie orcidid: 0000-0002-7001-2926 surname: Chen fullname: Chen, Renjie email: chenrj@bit.edu.cn organization: Beijing Institute of Technology – sequence: 7 givenname: Li surname: Li fullname: Li, Li email: lily863@bit.edu.cn organization: Guangzhou Institute of Energy Testing |
BookMark | eNqFkE1Lw0AQhhdRsFWvngNevKTOfiXdY61WC_UDqucw2Wx0Jd2t2cTSmz_B3-gvMVpR8OJphuF5Z4anT7add4aQQwoDCsBOsFjggAFjIHgKW6RHJaOxACW3SQ8Ul7FKxHCX9EN4AgCVQNIjONKP1rxY9xDN29CgdZhXJkJXRPPmq731DYZg28X769vUu-gUm8bU1oQoX0czg2U3P7XeurC0tSmia3S-rFpbWB1NKr_aJzslVsEcfNc9cj85vxtfxrObi-l4NIs1lwBxquiQIc1LwyRIM5SqLBElRakRNE-EUZTrtACeF5gWnDFMEiXylFHJudB8jxxv9i5r_9ya0GQLG7SpKnTGtyFjKXBBuzPQoUd_0Cff1q77rqPoUCSUK9FRgw2lax9CbcpsWdsF1uuMQvZpPPs0nv0Y7wJqE1jZyqz_obPR2dXoN_sBjSGH1w |
CitedBy_id | crossref_primary_10_1021_acsenergylett_3c00529 crossref_primary_10_20517_energymater_2023_36 crossref_primary_10_1002_anie_202404332 crossref_primary_10_1007_s12274_023_6102_3 crossref_primary_10_1021_acsnano_4c02547 crossref_primary_10_1002_aenm_202203277 crossref_primary_10_1002_smll_202301237 crossref_primary_10_1039_D3CS01043K crossref_primary_10_1002_ange_202404332 crossref_primary_10_1021_acs_langmuir_3c03679 crossref_primary_10_1016_j_nanoen_2023_108913 crossref_primary_10_1021_acs_chemrev_3c00919 crossref_primary_10_1016_j_jhazmat_2023_131134 crossref_primary_10_1039_D3CY01298K crossref_primary_10_1002_aenm_202204376 crossref_primary_10_1002_advs_202400405 crossref_primary_10_3390_biomimetics8020140 |
Cites_doi | 10.1021/acs.jpcc.8b11069 10.1002/anie.202108882 10.1002/anie.201908542 10.1002/adma.202102471 10.1016/j.chempr.2021.06.008 10.1002/adma.202006897 10.1002/anie.202104003 10.1038/s41467-021-27728-0 10.1002/anie.202116048 10.1007/s11426-021-1057-3 10.1038/s41563-020-0625-8 10.1039/D0EE02917C 10.1002/adma.202106876 10.1002/adma.202101413 10.1039/D1EE03924E 10.1016/j.wasman.2017.10.028 10.1021/jacs.8b02178 10.1002/anie.202102368 10.1002/anie.202103052 10.1002/adma.202100272 10.1002/adma.202106370 10.1002/adma.202101006 10.1038/s41565-020-00788-x 10.1021/ja409508q 10.1038/s41586-021-03603-2 10.1039/D0EE02919J 10.1002/anie.202117661 10.1002/adma.202100837 10.1093/nsr/nwab055 10.1038/s41467-020-18820-y 10.1002/adma.201806664 10.1002/adma.202001894 10.1021/acs.nanolett.5b04166 10.1002/adma.202108621 10.1002/anie.202100654 10.1002/smll.202105897 10.1021/nl200658a 10.1002/adma.201103392 10.1002/anie.202004424 10.1002/adma.202005993 10.1038/s41565-020-00797-w 10.1002/eom2.12038 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202204370 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202204370 ADMA202204370 |
Genre | article |
GrantInformation_xml | – fundername: S&T Major Project of Inner Mongolia Autonomous Region in China funderid: 2020ZD0018 – fundername: National Natural Science Foundation of China funderid: 51972030; 51772030 – fundername: Beijing Outstanding Young Scientists Program funderid: BJJWZYJH01201910007023 – fundername: Guangdong Key Laboratory of Battery Safety funderid: 2019B121203008 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AASGY AAYOK AAYXX ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMNL JG9 7X8 |
ID | FETCH-LOGICAL-c3500-79182a1bfe2505e859ffaa51a5ca0c364e913c7d03bda7d322a6694b7215334c3 |
IEDL.DBID | 33P |
ISSN | 0935-9648 |
IngestDate | Fri Aug 16 09:47:05 EDT 2024 Tue Nov 19 06:45:49 EST 2024 Thu Sep 26 16:09:03 EDT 2024 Sat Aug 24 00:58:49 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3500-79182a1bfe2505e859ffaa51a5ca0c364e913c7d03bda7d322a6694b7215334c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7001-2926 |
PQID | 2718461394 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2703417910 proquest_journals_2718461394 crossref_primary_10_1002_adma_202204370 wiley_primary_10_1002_adma_202204370_ADMA202204370 |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2021; 7 2021; 64 2018; 140 2019; 31 2019; 58 2020; 59 2011; 11 2020; 11 2020; 32 2016; 16 2019; 123 2020; 19 2021; 14 2021; 16 2020; 2 2021; 33 2022; 61 2022; 34 2022; 13 2013; 135 2022; 15 2021; 595 2018; 71 2021; 60 2012; 24 2022; 18 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 60 year: 2021 publication-title: Angew.Chem., Int. Ed. – volume: 58 year: 2019 publication-title: Angew.Chem. Int. Ed. – volume: 16 start-page: 166 year: 2021 publication-title: Nat. Nanotechnol. – volume: 18 year: 2022 publication-title: Small – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 2 year: 2020 publication-title: EcoMat. – volume: 71 start-page: 362 year: 2018 publication-title: Waste Manage. – volume: 7 start-page: 2684 year: 2021 publication-title: Chem – volume: 140 start-page: 7127 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2021 publication-title: Natl. Sci. Rev. – volume: 15 start-page: 1529 year: 2022 publication-title: Energy Environ. Sci. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 595 start-page: 58 year: 2021 publication-title: Nature – volume: 64 start-page: 1401 year: 2021 publication-title: Sci. China. Chem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 519 year: 2016 publication-title: Nano Lett. – volume: 19 start-page: 254 year: 2020 publication-title: Nat. Mater. – volume: 11 start-page: 5025 year: 2020 publication-title: Nat. Commun. – volume: 13 start-page: 125 year: 2022 publication-title: Nat. Commun. – volume: 123 start-page: 2775 year: 2019 publication-title: J. Phys. Chem. C – volume: 24 start-page: 1176 year: 2012 publication-title: Adv. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 16 start-page: 77 year: 2021 publication-title: Nat. Nanotechnol. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 14 start-page: 2186 year: 2021 publication-title: Energy Environ. Sci. – volume: 14 start-page: 424 year: 2021 publication-title: Energy Environ. Sci. – volume: 11 start-page: 2644 year: 2011 publication-title: Nano Lett. – ident: e_1_2_7_41_1 doi: 10.1021/acs.jpcc.8b11069 – ident: e_1_2_7_16_1 doi: 10.1002/anie.202108882 – ident: e_1_2_7_36_1 doi: 10.1002/anie.201908542 – ident: e_1_2_7_30_1 doi: 10.1002/adma.202102471 – ident: e_1_2_7_31_1 doi: 10.1016/j.chempr.2021.06.008 – ident: e_1_2_7_6_1 doi: 10.1002/adma.202006897 – ident: e_1_2_7_8_1 doi: 10.1002/anie.202104003 – ident: e_1_2_7_5_1 doi: 10.1038/s41467-021-27728-0 – ident: e_1_2_7_15_1 doi: 10.1002/anie.202116048 – ident: e_1_2_7_38_1 doi: 10.1007/s11426-021-1057-3 – ident: e_1_2_7_19_1 doi: 10.1038/s41563-020-0625-8 – ident: e_1_2_7_22_1 doi: 10.1039/D0EE02917C – ident: e_1_2_7_21_1 doi: 10.1002/adma.202106876 – ident: e_1_2_7_9_1 doi: 10.1002/adma.202101413 – ident: e_1_2_7_20_1 doi: 10.1039/D1EE03924E – ident: e_1_2_7_35_1 doi: 10.1016/j.wasman.2017.10.028 – ident: e_1_2_7_33_1 doi: 10.1021/jacs.8b02178 – ident: e_1_2_7_34_1 doi: 10.1002/anie.202102368 – ident: e_1_2_7_27_1 doi: 10.1002/anie.202103052 – ident: e_1_2_7_28_1 doi: 10.1002/adma.202100272 – ident: e_1_2_7_14_1 doi: 10.1002/adma.202106370 – ident: e_1_2_7_42_1 doi: 10.1002/adma.202101006 – ident: e_1_2_7_7_1 doi: 10.1038/s41565-020-00788-x – ident: e_1_2_7_12_1 doi: 10.1021/ja409508q – ident: e_1_2_7_18_1 doi: 10.1038/s41586-021-03603-2 – ident: e_1_2_7_32_1 doi: 10.1039/D0EE02919J – ident: e_1_2_7_26_1 doi: 10.1002/anie.202117661 – ident: e_1_2_7_29_1 doi: 10.1002/adma.202100837 – ident: e_1_2_7_2_1 doi: 10.1093/nsr/nwab055 – ident: e_1_2_7_3_1 doi: 10.1038/s41467-020-18820-y – ident: e_1_2_7_37_1 doi: 10.1002/adma.201806664 – ident: e_1_2_7_10_1 doi: 10.1002/adma.202001894 – ident: e_1_2_7_17_1 doi: 10.1021/acs.nanolett.5b04166 – ident: e_1_2_7_23_1 doi: 10.1002/adma.202108621 – ident: e_1_2_7_25_1 doi: 10.1002/anie.202100654 – ident: e_1_2_7_40_1 doi: 10.1002/smll.202105897 – ident: e_1_2_7_11_1 doi: 10.1021/nl200658a – ident: e_1_2_7_13_1 doi: 10.1002/adma.201103392 – ident: e_1_2_7_4_1 doi: 10.1002/anie.202004424 – ident: e_1_2_7_24_1 doi: 10.1002/adma.202005993 – ident: e_1_2_7_1_1 doi: 10.1038/s41565-020-00797-w – ident: e_1_2_7_39_1 doi: 10.1002/eom2.12038 |
SSID | ssj0009606 |
Score | 2.5261831 |
Snippet | In nature, living systems have evolved integrated structures, matching optimized nanofluidics to adapt to external conditions. In rechargeable batteries,... Abstract In nature, living systems have evolved integrated structures, matching optimized nanofluidics to adapt to external conditions. In rechargeable... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2204370 |
SubjectTerms | Batteries bioinspired materials Biomimetics Cobalt sulfide Decay rate Dissolution Electrodes Energy conversion Fluidics Materials science nanofluidics Nanofluids Porous media potassium‐ion batteries Rechargeable batteries spent batteries’ recycling System effectiveness |
Title | Achieving Sustainable and Stable Potassium‐Ion Batteries by Leaf‐Bioinspired Nanofluidic Flow |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202204370 https://www.proquest.com/docview/2718461394 https://search.proquest.com/docview/2703417910 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsRAEG3Ukx7cxXGjBcFTMOkly3FcBgUVQQVvoXrDgCbiGMSbn-A3-iV2JTMZPQl66yydhOqqrlddqdeE7Fnv9ZVKXBDpmPsAJVJBymMVSAAmnfY64HC94_Q6ubxLj0-QJqer4m_5IboFN7SMZr5GAwc1PJiQhoJpeIMYFncmGLT7UKGp4eBXE9bduNlcE5N9QRaLdMzaGLKDn91_eqUJ1PwOWBuPM1j4_7cukvkR2qT9Vj2WyJQtl8ncNw7CFQJ9fV9YXFag15NiKgqloR6IYvOqevEIu6gfP98_zqqStpScPsKm6o2eW3D-_GFRFSUm7a2hfsKu3ENdmELTwUP1ukpuByc3R6fBaN-FQHMZhshgmTKIlLOIj2wqM-cAZARSQ6h5LGwWcZ2YkCsDifFTAsRxJpQPJrGwV_M1MlNWpV0nNEys1BHTIjJOCCGVhDixLAPgziMz3SP7Y7nnTy29Rt4SKbMchZZ3QuuRrfGw5CMzG-bMe1bhAUkmemS3u-wNBLMeUNqqxntCjtusRf4RrBmkX96U948v-t3Rxl86bZJZbLf_om2RmZfn2m6T6aGpdxoF_QKikOXk |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOEAPQHmIQEoXCYmTVXtfto-GNkpFWlVKkLhZsy_VUrBREwtx60_ob-SXsGPn0Z6QKm722mtbszs738x6viHkowtWX-vUR4lRPDgoiY4yrnQkAZj0JswBj_GOySw9_54dnyBNTrHJhen5IbYBN9SMbr1GBceA9NGONRRsRxzEMLszDV77I6FEjtUbOL_Y8e6qrrwmbvdFuRLZhrcxZkd3-9-1SzuweRuydjZn_Ow_fO1z8nQNOGnRz5B98sDVL8jeLRrClwQKc1k5jCzQ2S6fikJtacCieHjRrALIrtoff65vTpua9qycwcmm-jedOvCh_XPVVDXu2ztLw5rd-EVb2crQ8aL59Yp8G5_Mv0yidemFyHAZx0himTFItHcIkVwmc-8BZALSQGy4Ei5PuEltzLWF1IZVAZTKhQ7-JOb2Gv6aDOqmdm8IjVMnTcKMSKwXQkgtQaWO5QDcB3BmhuTTRvDlz55ho-y5lFmJQiu3QhuS0WZcyrWmLUsWjKsImCQXQ_JheznoCG58QO2aFu-JOVZaS8IjWDdK_3hTWRyfFduzt_fpdEgeT-Zn03J6ev71HXmC7f2vaSMyWF217oA8XNr2fTdb_wIlKuoF |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG7WEcQ9-F52XB8tCJ6CST_yOM46DsqqDKjgLVS_2ICbyDph2Zs_wd-4v2S7kpmMngS9JZ10Eqqrur7qSn1NyKH1Xl-pxAWRjrkPUCIVpDxWgQRg0mmvAw7XO86uk6u7dHiKNDldFX_LD9EtuKFlNPM1GviDccdz0lAwDW8Qw-LOxAftiwKxOBZx8PGcdjdudtfEbF-QxSKd0TaG7Ph1_9duaY41XyLWxuWMVj_-sWtkZQo36aDVj3XyyZYb5PMLEsJNAgP9s7C4rkCv59VUFEpDPRLFw3E18RC7qH_9e3o-r0racnL6EJuqv_TCgvPt34uqKDFrbw31M3bl7uvCFJqO7qs_W-R2dHpzchZMN14INJdhiBSWKYNIOYsAyaYycw5ARiA1hJrHwmYR14kJuTKQGD8nQBxnQvloEit7Nf9CemVV2q-EhomVOmJaRMYJIaSSECeWZQDceWim--RoJvf8oeXXyFsmZZaj0PJOaH2yMxuWfGpnjznzrlV4RJKJPjnoLnsLwbQHlLaq8Z6Q4z5rkX8EawbpjTflg-HloDvbfk-nfbI0Ho7yi_OrH9_IMja3_6XtkN7kd213ycKjqfcaXf0PcLHotA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+Sustainable+and+Stable+Potassium%E2%80%90Ion+Batteries+by+Leaf%E2%80%90Bioinspired+Nanofluidic+Flow&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Xixue&rft.au=Wu%2C+Feng&rft.au=Lv%2C+Xiaowei&rft.au=Xu%2C+Liqianyun&rft.date=2022-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=39&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202204370&rft.externalDBID=10.1002%252Fadma.202204370&rft.externalDocID=ADMA202204370 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |