Structural, optical and electronic properties of CuO and Zn doped CuO: DFT based First-principles calculations

Density functional theory based First-principles calculations have been performed to investigate the structural, optical and electronic properties of CuO and Zn doped CuO and compared with experimental results. Calculations are demonstrated by Cambridge Serial Total Energy Package. Calculated values...

Full description

Saved in:
Bibliographic Details
Published in:Chemical physics Vol. 528; p. 110536
Main Authors: Nesa, Meherun, Momin, Md. Abdul, Sharmin, Mehnaz, Bhuiyan, A.H.
Format: Journal Article
Language:English
Published: Elsevier B.V 01-01-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Density functional theory based First-principles calculations have been performed to investigate the structural, optical and electronic properties of CuO and Zn doped CuO and compared with experimental results. Calculations are demonstrated by Cambridge Serial Total Energy Package. Calculated values of lattice parameters matched 80% with experimental data of CuO and for Zn doped CuO, there was a 55% match. Figures of electronic band structure, TDOS and PDOS have been computed from the electronic structure of CuO and Zn doped CuO. Significant transition occurs in band gap after Zn doping. Optical properties showed that CuO and Zn doped CuO were transparent, having a small energy gap and maximum reflectivity at infrared region. The real part of refractive index was higher at lower energy region and imaginary part of refractive index was zero at 28 eV photon energy. The calculated value of band gap was in good agreement with the experimental value.
ISSN:0301-0104
DOI:10.1016/j.chemphys.2019.110536