Density Functional Theory Based Modeling of the Corrosion on Iron Surfaces
In order to understand the first steps of the aqueous corrosion of iron, we have performed density functional theory (DFT) based calculations for water molecules and pre-covered oxygen on iron surface. The surface structure is modeled by iron atomic layer and vacuum region, and then oxygen atom and...
Saved in:
Published in: | Archives of metallurgy and materials Vol. 58; no. 2; pp. 321 - 323 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Warsaw
Polish Academy of Sciences
01-06-2013
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to understand the first steps of the aqueous corrosion of iron, we have performed density functional theory (DFT) based calculations for water molecules and pre-covered oxygen on iron surface. The surface structure is modeled by iron atomic layer and vacuum region, and then oxygen atom and water molecules are displaced on the surface. Self consistent DFT calculations were performed using a numerical atomic orbital basis set and a norm-conserve pseudopotential method. According to our calculations, with increasing surface oxygen coverage, the iron surface is found to be not activated, which leads to a feeble adsorption of water molecules on iron surface. Our results show that the surface covered oxygen exerts an influence on the adsorption of water molecules on iron surface. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1733-3490 2300-1909 |
DOI: | 10.2478/v10172-012-0190-5 |