Maxwell equation and classical theories of glass transition as a basis for direct calculation of viscosity at glass transition temperture
The main relaxation theories of glass transition (Leontovich-Mandelstam and Volkenstein-Ptitsyn) variously formulate the kinetic criteria of glass transition. Both of the approaches are shown to be equivalent in physical sense and provide a single expression that connects the rate of change of a mel...
Saved in:
Published in: | Glass physics and chemistry Vol. 39; no. 6; pp. 609 - 623 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Moscow
Pleiades Publishing
01-11-2013
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The main relaxation theories of glass transition (Leontovich-Mandelstam and Volkenstein-Ptitsyn) variously formulate the kinetic criteria of glass transition. Both of the approaches are shown to be equivalent in physical sense and provide a single expression that connects the rate of change of a melt temperature and the structure relaxtion time. The theory characterizes the width of a temperature band δ
T
g
in which the glass transition occurs. The values of δ
T
g
can either be obtained from the experiment or be accepted to conform to the value of a temperature step under the change of viscosity by an order of magnitude (direct method for finding by the Volkenstein-Ptitsyn theory). Using the Maxwell equation, a new equation for the calculation of the viscosity for viscoelastic relaxation was suggested, which is based on a shear modulus of glass and the cooling rate. The theory was verified basing on the published data for oxide glass. The average difference between the calculated and measured values of lgη upon glass transition comprises 0 ± 0.30. These results correspond to the cooling rate of 3 K/min and log(η, Pa s) = 12.76 ± 0.26 (for all glass considered). It is shown that the most probable cooling rate which provides the viscosity upon glass transition of ∼1012 Pa s is close to 20 K/min (oxide melts). The theory predetermines the dependence of viscosity upon glass transition on the nature of a glass-forming liquid. The disadvantages of other approaches to the problem under consideration are demonstrated. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1087-6596 1608-313X |
DOI: | 10.1134/S1087659613060084 |