Evaluation of the antimicrobial activity of silver nanoparticles biosynthesized from the aqueous extract of Schinus terebinthifolius Raddi leaves
Silver nanoparticles (AgNPs) synthesized from green synthesis using medicinal plants are presented as an option for the development of new antimicrobial agents. In this context, this study aims to evaluate the antimicrobial activity of silver nanoparticles synthesized from the aqueous extract of Sch...
Saved in:
Published in: | Biotechnology and applied biochemistry Vol. 70; no. 3; pp. 1001 - 1014 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Wiley Subscription Services, Inc
01-06-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Silver nanoparticles (AgNPs) synthesized from green synthesis using medicinal plants are presented as an option for the development of new antimicrobial agents. In this context, this study aims to evaluate the antimicrobial activity of silver nanoparticles synthesized from the aqueous extract of Schinus terebinthifolius Raddi leaves, popularly known as “aroeira.” A 23 factorial design was used to assess the statistical significance of the studied factors, and Box–Behnken design was used to define the optimal conditions for the green synthesis of AgNPs. The studied factors were significant for the synthesis of nanoparticles, and the optimal conditions were pH 9.5, reaction time of 180 min, and 10 g of S. terebinthifolius Raddi leaves. The samples were characterized using UV–Vis spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and dynamic light scattering. Antimicrobial activity was evaluated using the broth microdilution method and through the minimum microbicidal concentration. AgNPs showed greater antimicrobial efficacy compared to the extract, both for bacteria and fungi: bacteriostatic activity against all tested bacteria and bactericidal against Pseudomonas aeruginosa, besides fungistatic action against Candida albicans and Candida glabrata. Finally, the aqueous extract of “aroeira” leaves was effective in the synthesis of AgNPs, with greater antimicrobial potential than the extract.
Graphical
This study aims to evaluate the antimicrobial activity of silver nanoparticles synthesized from the aqueous extract of Schinus terebinthifolius Raddi leaves. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0885-4513 1470-8744 |
DOI: | 10.1002/bab.2415 |