Comparison of numerical methods for cerebrospinal fluid representation and fluid–structure interaction during transverse impact of a finite element spinal cord model

Spinal cord impacts can have devastating consequences. Computational models can investigate such impacts but require biofidelic numerical representations of the neural tissues and fluid–structure interaction with cerebrospinal fluid. Achieving this biofidelity is challenging, particularly for effici...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in biomedical engineering Vol. 38; no. 3; pp. e3570 - n/a
Main Authors: Rycman, Aleksander, McLachlin, Stewart, Cronin, Duane S.
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01-03-2022
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Spinal cord impacts can have devastating consequences. Computational models can investigate such impacts but require biofidelic numerical representations of the neural tissues and fluid–structure interaction with cerebrospinal fluid. Achieving this biofidelity is challenging, particularly for efficient implementation of the cerebrospinal fluid in full computational human body models. The goal of this study was to assess the biofidelity and computational efficiency of fluid–structure interaction methods representing the cerebrospinal fluid interacting with the spinal cord, dura, and pia mater using experimental pellet impact test data from bovine spinal cords. Building on an existing finite element model of the spinal cord and pia mater, an orthotropic hyperelastic constitutive model was proposed for the dura mater and fit to literature data. The dura mater and cerebrospinal fluid were integrated with the existing finite element model to assess four fluid–structure interaction methods under transverse impact: Lagrange, pressurized volume, smoothed particle hydrodynamics, and arbitrary Lagrangian–Eulerian. The Lagrange method resulted in an overly stiff mechanical response, whereas the pressurized volume method over‐predicted compression of the neural tissues. Both the smoothed particle hydrodynamics and arbitrary Lagrangian–Eulerian methods were able to effectively model the impact response of the pellet on the dura mater, outflow of the cerebrospinal fluid, and compression of the spinal cord; however, the arbitrary Lagrangian–Eulerian compute time was approximately five times higher than smoothed particle hydrodynamics. Crucial to implementation in human body models, the smoothed particle hydrodynamics method provided a computationally efficient and representative approach to model spinal cord fluid–structure interaction during transverse impact. Computational modeling of fluid–structure interaction during spinal cord impact was investigated to examine numerical methods for cerebrospinal fluid (CSF) deformation. Lagrange, Pressurized Volume (PV), Smoothed Particle Hydrodynamics (SPH), and Arbitrary Lagrangian–Eulerian (ALE) methods were compared against experimental transverse compression data for the spinal cord‐CSF‐dura mater complex. The SPH and ALE methods captured outflow of the CSF in the impact zone and were in the best agreement with the experiments. The SPH method provided a significant computational benefit over the ALE method.
AbstractList Spinal cord impacts can have devastating consequences. Computational models can investigate such impacts but require biofidelic numerical representations of the neural tissues and fluid–structure interaction with cerebrospinal fluid. Achieving this biofidelity is challenging, particularly for efficient implementation of the cerebrospinal fluid in full computational human body models. The goal of this study was to assess the biofidelity and computational efficiency of fluid–structure interaction methods representing the cerebrospinal fluid interacting with the spinal cord, dura, and pia mater using experimental pellet impact test data from bovine spinal cords. Building on an existing finite element model of the spinal cord and pia mater, an orthotropic hyperelastic constitutive model was proposed for the dura mater and fit to literature data. The dura mater and cerebrospinal fluid were integrated with the existing finite element model to assess four fluid–structure interaction methods under transverse impact: Lagrange, pressurized volume, smoothed particle hydrodynamics, and arbitrary Lagrangian–Eulerian. The Lagrange method resulted in an overly stiff mechanical response, whereas the pressurized volume method over‐predicted compression of the neural tissues. Both the smoothed particle hydrodynamics and arbitrary Lagrangian–Eulerian methods were able to effectively model the impact response of the pellet on the dura mater, outflow of the cerebrospinal fluid, and compression of the spinal cord; however, the arbitrary Lagrangian–Eulerian compute time was approximately five times higher than smoothed particle hydrodynamics. Crucial to implementation in human body models, the smoothed particle hydrodynamics method provided a computationally efficient and representative approach to model spinal cord fluid–structure interaction during transverse impact.
Spinal cord impacts can have devastating consequences. Computational models can investigate such impacts but require biofidelic numerical representations of the neural tissues and fluid–structure interaction with cerebrospinal fluid. Achieving this biofidelity is challenging, particularly for efficient implementation of the cerebrospinal fluid in full computational human body models. The goal of this study was to assess the biofidelity and computational efficiency of fluid–structure interaction methods representing the cerebrospinal fluid interacting with the spinal cord, dura, and pia mater using experimental pellet impact test data from bovine spinal cords. Building on an existing finite element model of the spinal cord and pia mater, an orthotropic hyperelastic constitutive model was proposed for the dura mater and fit to literature data. The dura mater and cerebrospinal fluid were integrated with the existing finite element model to assess four fluid–structure interaction methods under transverse impact: Lagrange, pressurized volume, smoothed particle hydrodynamics, and arbitrary Lagrangian–Eulerian. The Lagrange method resulted in an overly stiff mechanical response, whereas the pressurized volume method over‐predicted compression of the neural tissues. Both the smoothed particle hydrodynamics and arbitrary Lagrangian–Eulerian methods were able to effectively model the impact response of the pellet on the dura mater, outflow of the cerebrospinal fluid, and compression of the spinal cord; however, the arbitrary Lagrangian–Eulerian compute time was approximately five times higher than smoothed particle hydrodynamics. Crucial to implementation in human body models, the smoothed particle hydrodynamics method provided a computationally efficient and representative approach to model spinal cord fluid–structure interaction during transverse impact. Computational modeling of fluid–structure interaction during spinal cord impact was investigated to examine numerical methods for cerebrospinal fluid (CSF) deformation. Lagrange, Pressurized Volume (PV), Smoothed Particle Hydrodynamics (SPH), and Arbitrary Lagrangian–Eulerian (ALE) methods were compared against experimental transverse compression data for the spinal cord‐CSF‐dura mater complex. The SPH and ALE methods captured outflow of the CSF in the impact zone and were in the best agreement with the experiments. The SPH method provided a significant computational benefit over the ALE method.
Author Rycman, Aleksander
McLachlin, Stewart
Cronin, Duane S.
Author_xml – sequence: 1
  givenname: Aleksander
  orcidid: 0000-0002-7650-8703
  surname: Rycman
  fullname: Rycman, Aleksander
  organization: University of Waterloo
– sequence: 2
  givenname: Stewart
  surname: McLachlin
  fullname: McLachlin, Stewart
  organization: University of Waterloo
– sequence: 3
  givenname: Duane S.
  orcidid: 0000-0001-7538-0560
  surname: Cronin
  fullname: Cronin, Duane S.
  email: dscronin@uwaterloo.ca
  organization: University of Waterloo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34997836$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1uFDEUhC0UREKIxAmQJTbZdPBPjz1eohF_UoANrFse-xkcddvNszsoO-6QQ3AvToInM0QICW_8pPpcZbsek6OUExDylLMLzph44dJ0IVeaPSAngvWs06bXR_ezNMfkrJQr1pYwxmj5iBzLvg1rqU7Iz02eZoux5ERzoGmZAKOzI52gfs2-0JCROkDYYi5zTE0J4xI9RZgRCqRqa2xnbfJ74deP21JxcXVBoDFVQOvuCL9gTF9oRZvKNWBpakt2dRdraYgpVqAwwtQ86SHKZfR0yh7GJ-RhsGOBs8N-Sj6_fvVp87a7_Pjm3eblZefam1i3WjMeAtdciz6sgDnuDN8qZ1wQhnnLWa-kEqp30nNhpLDe90EbLYQNigt5Ss73vjPmbwuUOkyxOBhHmyAvZRCKr4VQqtcNff4PepUXbNfeUXLN5EqZvwxd-8CCEIYZ42TxZuBs2PU3tP6GXX8NfXYwXLYT-HvwT1sN6PbA9zjCzX-Nhs2H93eGvwG2zqmp
CitedBy_id crossref_primary_10_1007_s10439_022_03089_7
crossref_primary_10_1038_s43856_023_00430_6
crossref_primary_10_1007_s10856_022_06704_0
crossref_primary_10_1007_s10439_023_03428_2
crossref_primary_10_1016_j_xnsj_2023_100246
crossref_primary_10_1007_s43452_023_00758_9
Cites_doi 10.1016/j.jbiomech.2011.01.035
10.1016/j.jbiomech.2014.04.042
10.3171/2009.1.SPINE08286
10.1002/cnm.2612
10.1016/j.clinbiomech.2020.02.008
10.1016/j.jspd.2017.04.008
10.1115/1.4034171
10.1089/neu.2006.0149
10.1089/neu.2007.0348
10.1016/j.jbiomech.2012.01.025
10.1007/978-3-030-11659-0
10.1097/00000539‐199906000‐00022
10.1080/02688699550040927
10.1007/s10439‐010‐9924‐6
10.1542/peds.89.5.895
10.1097/00000542‐199608000‐00014
10.1016/0090‐3019(82)90284‐1
10.1016/j.actbio.2018.05.045
10.1243/09544119JEIM631
10.1177/1687814016664703
10.1115/1.3138285
10.1016/j.spinee.2011.11.001
10.1097/BRS.0b013e31817ecc57
10.1016/j.clinbiomech.2019.12.023
10.1533/ijcr.2003.0243
10.3171/spi.2004.1.1.0122
10.1115/1.4025101
10.1002/cnm.3440
10.1016/j.actbio.2018.05.002
10.1016/j.jmbbm.2019.103400
10.1089/neu.1988.5.187
10.1123/jab.27.4.330
10.1089/neu.2010.1332
10.3171/jns.1988.69.2.0276
10.1146/annurev.fluid.29.1.123
10.1007/8415_2011_83
10.4271/2006-22-0025
10.1097/BRS.0b013e3181894fd3
10.1007/s10439‐012‐0519‐2
10.1002/nme.1651
10.1007/s12565‐017‐0412‐z
10.3389/fbioe.2021.693120
10.1016/j.jmbbm.2014.02.014
10.1089/neu.2019.6840
10.1007/978-3-319-09522-6_20
10.1016/j.expneurol.2004.09.016
10.1016/j.actbio.2017.12.024
10.1016/j.clinbiomech.2020.02.009
10.1007/s00586‐003‐0625‐9
10.1016/j.clinbiomech.2018.03.019
10.1089/neu.2015.3956
10.1115/1.4033794
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID NPM
AAYXX
CITATION
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/cnm.3570
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Civil Engineering Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Civil Engineering Abstracts

CrossRef
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2040-7947
EndPage n/a
ExternalDocumentID 10_1002_cnm_3570
34997836
CNM3570
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: General Motors of Canada Ltd.
– fundername: Honda Research & Development Americas, Inc.
– fundername: Stellantis
– fundername: General Motors of Canada
– fundername: Global Human Body Models Consortium
– fundername: Natural Sciences and Engineering Research Council of Canada
– fundername: Compute Canada
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
4.4
50Z
51W
51X
52N
52O
52P
52S
52T
52U
52W
52X
53G
66C
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
NPM
AAMNL
AAYXX
CITATION
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3490-5801ff171724f5e0c1c91b6c9cf290da104636264c3d12932add4f79722af6123
IEDL.DBID 33P
ISSN 2040-7939
IngestDate Fri Aug 16 23:39:32 EDT 2024
Thu Oct 10 22:13:50 EDT 2024
Thu Nov 21 22:16:35 EST 2024
Sat Sep 28 08:20:49 EDT 2024
Sat Aug 24 00:56:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords fluid-structure interaction
spinal cord
finite element model
cerebrospinal fluid
human body model
impact
Language English
License 2022 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3490-5801ff171724f5e0c1c91b6c9cf290da104636264c3d12932add4f79722af6123
Notes Funding information
General Motors of Canada Ltd.; Global Human Body Models Consortium; Honda Research & Development Americas, Inc.; Stellantis; General Motors of Canada; Natural Sciences and Engineering Research Council of Canada; Compute Canada
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7538-0560
0000-0002-7650-8703
PMID 34997836
PQID 2638035692
PQPubID 2034586
PageCount 14
ParticipantIDs proquest_miscellaneous_2618226647
proquest_journals_2638035692
crossref_primary_10_1002_cnm_3570
pubmed_primary_34997836
wiley_primary_10_1002_cnm_3570_CNM3570
PublicationCentury 2000
PublicationDate March 2022
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: Chichester
PublicationTitle International journal for numerical methods in biomedical engineering
PublicationTitleAlternate Int J Numer Method Biomed Eng
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 1982; 17
1981; 103
2004; 4
1999; 88
2011; 11
2008; 33
2004; 1
2012; 14
2016; 33
2018; 6
2021; 37
2009; 10
2006; 67
2003; 8
2008; 25
2006; 2007
2018; 74
2019; 2020
2011; 28
2011; 27
2018; 75
1992; 89
2007; 24
2021; 9
2005; 191
1995; 9
2010; 38
2011
2018; 2020
2009
1998
2008
2020; 38
1997; 29
2014; 47
2006
2018; 64
2019; 100
2018; 68
2020; 74
1988; 69
1988; 5
2004; 13
2019
2011; 44
1996; 85
2018
2013; 135
2009; 223
2016; 138
2015
2014
2018; 93
2014; 30
2012; 45
2014; 34
2016; 8
2012; 40
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Roache PJ (e_1_2_10_60_1) 1998
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Persson C (e_1_2_10_49_1) 2009
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
Mazgajczyk E (e_1_2_10_15_1) 2012; 14
e_1_2_10_20_1
e_1_2_10_41_1
Cronin DS (e_1_2_10_3_1) 2011
e_1_2_10_52_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_26_1
Tabiei A (e_1_2_10_39_1) 2004; 4
e_1_2_10_47_1
References_xml – year: 2011
– volume: 74
  start-page: 79
  year: 2020
  end-page: 86
  article-title: A comprehensive finite element model of surgical treatment for cervical myelopathy
  publication-title: Clin Biomech
– year: 2009
– start-page: 14
  year: 2008
  end-page: 21
– volume: 38
  start-page: 975
  issue: 3
  year: 2010
  end-page: 983
  article-title: Poisson's ratio and strain rate dependency of the constitutive behavior of spinal dura mater
  publication-title: Ann Biomed Eng
– volume: 40
  start-page: 1530
  issue: 7
  year: 2012
  end-page: 1544
  article-title: Development of a finite element model for blast brain injury and the effects of CSF cavitation
  publication-title: Ann Biomed Eng
– volume: 138
  issue: 8
  year: 2016
  article-title: Biomechanical behaviors in three types of spinal cord injury mechanisms
  publication-title: J Biomech Eng
– volume: 2007
  start-page: 637
  year: 2006
  end-page: 649
– volume: 17
  start-page: 213
  issue: 3
  year: 1982
  end-page: 217
  article-title: Mechanical and neurological response of cat spinal cord under static loading
  publication-title: Surg Neurol
– volume: 14
  start-page: 51
  issue: 1
  year: 2012
  end-page: 58
  article-title: Mechanical properties of cervical dura mater
  publication-title: Acta Bioeng Biomech
– volume: 28
  start-page: 113
  issue: 1
  year: 2011
  end-page: 125
  article-title: The importance of fluid‐structure interaction in spinal trauma models
  publication-title: J Neurotrauma
– volume: 25
  start-page: 38
  issue: 1
  year: 2008
  end-page: 51
  article-title: Mechanical properties of dura mater from the rat brain and spinal cord
  publication-title: J Neurotrauma
– volume: 47
  start-page: 2820
  issue: 11
  year: 2014
  end-page: 2825
  article-title: Effect of bone fragment impact velocity on biomechanical parameters related to spinal cord injury: a finite element study
  publication-title: J Biomech
– volume: 9
  start-page: 9
  year: 2021
  article-title: A hyper‐viscoelastic continuum‐level finite element model of the spinal cord assessed for transverse indentation and impact loading
  publication-title: Front Bioeng Biotechnol
– volume: 33
  start-page: 439
  issue: 5
  year: 2016
  end-page: 459
  article-title: A unilateral cervical spinal cord contusion injury model in non‐human primates ( )
  publication-title: J Neurotrauma
– start-page: 1
  year: 2009
  end-page: 8
– year: 2018
– volume: 30
  start-page: 470
  issue: 4
  year: 2014
  end-page: 489
  article-title: Head and brain response to blast using sagittal and transverse finite element models
  publication-title: Int J Numer Methods Biomed Eng
– volume: 191
  start-page: 251
  issue: 2
  year: 2005
  end-page: 265
  article-title: Stepwise motor and all‐or‐none sensory recovery is associated with nonlinear sparing after incremental spinal cord injury in rats
  publication-title: Exp Neurol
– year: 1998
– volume: 33
  start-page: 580
  issue: 17
  year: 2008
  end-page: 588
  article-title: The effect of cerebrospinal fluid on the biomechanics of spinal cord: an ex vivo bovine model using bovine and physical surrogate spinal cord
  publication-title: Spine
– volume: 135
  issue: 11
  year: 2013
  article-title: Development of a finite element human head model partially validated with thirty five experimental cases
  publication-title: J Biomech Eng
– volume: 11
  start-page: 1121
  issue: 12
  year: 2011
  end-page: 1127
  article-title: Analysis of dural sac thickness in human spine—cadaver study with confocal infrared laser microscope
  publication-title: Spine J
– volume: 88
  start-page: 1317
  issue: 6
  year: 1999
  end-page: 1321
  article-title: Lumbar dura mater biomechanics: experimental characterization and scanning electron microscopy observatios
  publication-title: Anesth Analg
– volume: 9
  start-page: 639
  issue: 5
  year: 1995
  end-page: 644
  article-title: Physical properties of cerebrospinal fluid of relevance to shunt function. 1: The effect of protein upon CSF viscosity
  publication-title: Br J Neurosurg
– volume: 10
  start-page: 315
  issue: 4
  year: 2009
  end-page: 323
  article-title: The effect of bone fragment size and cerebrospinal fluid on spinal cord deformation during trauma: an ex vivo study
  publication-title: J Neurosurg Spine
– volume: 44
  start-page: 1078
  issue: 6
  year: 2011
  end-page: 1082
  article-title: Compression behavior of porcine spinal cord white matter
  publication-title: J Biomech
– volume: 2020
  start-page: 58
  issue: 74
  year: 2019
  end-page: 65
  article-title: Numerical investigation of the relative effect of disc bulging and ligamentum flavum hypertrophy on the mechanism of central cord syndrome
  publication-title: Clin Biomech
– start-page: 411
  year: 2015
  end-page: 434
– volume: 64
  start-page: 1
  year: 2018
  end-page: 13
  article-title: Engineering approaches to understanding mechanisms of spinal column injury leading to spinal cord injury
  publication-title: Clin Biomech
– volume: 4
  start-page: 25
  issue: 2
  year: 2004
  end-page: 44
  article-title: Transient response of a projectile in gun launch simulation using Lagrangian and ALE methods
  publication-title: Aerosp Eng
– volume: 67
  start-page: 841
  year: 2006
  end-page: 867
  article-title: A stabilized nodally integrated tetrahedral
  publication-title: Int J Numer Methods Eng
– volume: 89
  start-page: 895
  issue: 5
  year: 1992
  end-page: 897
  article-title: A simple method of estimating cerebrospinal fluid pressure during lumbar puncture
  publication-title: Pediatrics
– volume: 34
  start-page: 146
  year: 2014
  end-page: 153
  article-title: Biaxial response of ovine spinal cord dura mater
  publication-title: J Mech Behav Biomed Mater
– volume: 6
  start-page: 12
  issue: 1
  year: 2018
  end-page: 19
  article-title: Biomechanical simulation of stresses and strains exerted on the spinal cord and nerves during scoliosis correction maneuvers
  publication-title: Spine Deformity
– volume: 24
  start-page: 492
  issue: 3
  year: 2007
  end-page: 507
  article-title: Immediate damage to the blood‐spinal cord barrier due to mechanical trauma
  publication-title: J Neurotrauma
– volume: 138
  issue: 9
  year: 2016
  article-title: The transverse isotropy of spinal cord white matter under dynamic load
  publication-title: J Biomech Eng
– year: 2019
– volume: 13
  start-page: 481
  issue: 6
  year: 2004
  end-page: 488
  article-title: A dynamic investigation of the burst fracture process using a combined experimental and finite element approach
  publication-title: Eur Spine J
– volume: 27
  start-page: 330
  issue: 4
  year: 2011
  end-page: 335
  article-title: The effect of cerebrospinal fluid thickness on traumatic spinal cord deformation
  publication-title: J Appl Biomech
– volume: 223
  start-page: 1003
  issue: 8
  year: 2009
  end-page: 1019
  article-title: A finite element method parametric study of the dynamic response of the human brain with different cerebrospinal fluid constitutive properties
  publication-title: Proc Inst Mech Eng H J Eng Med
– volume: 100
  issue: June
  year: 2019
  article-title: Cavitation threshold evaluation of porcine cerebrospinal fluid using a polymeric split Hopkinson pressure bar‐confinement chamber apparatus
  publication-title: J Mech Behav Biomed Mater
– year: 2015
– start-page: 240
  year: 2011
  end-page: 254
  article-title: Explicit finite element method applied to impact biomechanics problems
  publication-title: IRCOBI Conf Proc
– volume: 8
  start-page: 353
  issue: 4
  year: 2003
  end-page: 366
  article-title: The creation of three‐dimensional finite element models for simulating head impact biomechanics
  publication-title: Int J Crashworthiness
– volume: 69
  start-page: 276
  issue: 2
  year: 1988
  end-page: 282
  article-title: The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study
  publication-title: J Neurosurg
– volume: 2020
  start-page: 186
  issue: 72
  year: 2018
  end-page: 194
  article-title: Dynamics of spinal cord compression with different patterns of thoracolumbar burst fractures: numerical simulations using finite element modelling
  publication-title: Clin Biomech
– volume: 8
  start-page: 1
  issue: 8
  year: 2016
  end-page: 8
  article-title: Geometrical variations in white and gray matter affect the biomechanics of spinal cord injuries more than the arachnoid space
  publication-title: Adv Mech Eng
– volume: 68
  start-page: 78
  year: 2018
  end-page: 89
  article-title: Comparison of in vivo and ex vivo viscoelastic behavior of the spinal cord
  publication-title: Acta Biomater
– volume: 38
  start-page: 698
  issue: 6
  year: 2020
  end-page: 717
  article-title: Correlating tissue mechanics and spinal cord injury: patient‐specific finite element models of unilateral cervical contusion spinal cord injury in non‐human primates
  publication-title: J Neurotrauma
– volume: 29
  start-page: 123
  year: 1997
  end-page: 160
  article-title: Quantification of uncertainty in computational fluid dynamics
  publication-title: Annu Rev Fluid Mech
– volume: 103
  start-page: 231
  issue: 4
  year: 1981
  end-page: 298
  article-title: Biomechanics: mechanical properties of living tissues
  publication-title: J Biomech Eng
– volume: 93
  start-page: 284
  issue: 2
  year: 2018
  end-page: 290
  article-title: Analysis of dural sac thickness in the human cervical spine
  publication-title: Anat Sci Int
– volume: 37
  start-page: 1
  issue: 4
  year: 2021
  end-page: 17
  article-title: Smoothed particle hydrodynamic modelling of the cerebrospinal fluid for brain biomechanics: accuracy and stability
  publication-title: Int J Numer Methods Biomed Eng
– volume: 1
  start-page: 122
  issue: 1
  year: 2004
  end-page: 127
  article-title: Mechanical properties and function of the spinal pia mater
  publication-title: J Neurosurg Spine
– volume: 45
  start-page: 1003
  issue: 6
  year: 2012
  end-page: 1010
  article-title: Mechanical indicators of injury severity are decreased with increased thecal sac dimension in a bench‐top model of contusion type spinal cord injury
  publication-title: J Biomech
– volume: 74
  start-page: 260
  year: 2018
  end-page: 269
  article-title: Compressive mechanical characterization of non‐human primate spinal cord white matter
  publication-title: Acta Biomater
– year: 2006
– volume: 33
  start-page: 812
  issue: 22
  year: 2008
  end-page: 819
  article-title: The distribution of tissue damage in the spinal cord is influenced by the contusion velocity
  publication-title: Spine
– volume: 5
  start-page: 187
  issue: 3
  year: 1988
  end-page: 208
  article-title: Interaction of contact velocity and cord compression in determining the severity of spinal cord injury
  publication-title: J Neurotrauma
– start-page: 1
  year: 2014
  end-page: 12
– volume: 75
  start-page: 15
  year: 2018
  end-page: 18
  article-title: Viscoelasticity of spinal cord and meningeal tissues
  publication-title: Acta Biomater
– volume: 85
  start-page: 326
  issue: 2
  year: 1996
  end-page: 330
  article-title: Density of lumbar cerebrospinal fluid in pregnant and nonpregnant humans
  publication-title: Anesthesiology
– ident: e_1_2_10_28_1
  doi: 10.1016/j.jbiomech.2011.01.035
– volume-title: Biomechanical Modelling of the Spinal Cord and Bone Fragment Interactions During A Vertebral Burst Fracture
  year: 2009
  ident: e_1_2_10_49_1
  contributor:
    fullname: Persson C
– ident: e_1_2_10_10_1
  doi: 10.1016/j.jbiomech.2014.04.042
– volume-title: Verification and validation in computational science and engineering
  year: 1998
  ident: e_1_2_10_60_1
  contributor:
    fullname: Roache PJ
– ident: e_1_2_10_31_1
  doi: 10.3171/2009.1.SPINE08286
– ident: e_1_2_10_55_1
  doi: 10.1002/cnm.2612
– ident: e_1_2_10_6_1
  doi: 10.1016/j.clinbiomech.2020.02.008
– ident: e_1_2_10_8_1
  doi: 10.1016/j.jspd.2017.04.008
– ident: e_1_2_10_43_1
  doi: 10.1115/1.4034171
– ident: e_1_2_10_66_1
– ident: e_1_2_10_47_1
  doi: 10.1089/neu.2006.0149
– ident: e_1_2_10_16_1
  doi: 10.1089/neu.2007.0348
– volume: 4
  start-page: 25
  issue: 2
  year: 2004
  ident: e_1_2_10_39_1
  article-title: Transient response of a projectile in gun launch simulation using Lagrangian and ALE methods
  publication-title: Aerosp Eng
  contributor:
    fullname: Tabiei A
– ident: e_1_2_10_32_1
  doi: 10.1016/j.jbiomech.2012.01.025
– ident: e_1_2_10_2_1
  doi: 10.1007/978-3-030-11659-0
– ident: e_1_2_10_12_1
  doi: 10.1097/00000539‐199906000‐00022
– ident: e_1_2_10_29_1
– ident: e_1_2_10_50_1
  doi: 10.1080/02688699550040927
– ident: e_1_2_10_13_1
  doi: 10.1007/s10439‐010‐9924‐6
– ident: e_1_2_10_34_1
  doi: 10.1542/peds.89.5.895
– ident: e_1_2_10_35_1
  doi: 10.1097/00000542‐199608000‐00014
– ident: e_1_2_10_5_1
  doi: 10.1016/0090‐3019(82)90284‐1
– ident: e_1_2_10_27_1
  doi: 10.1016/j.actbio.2018.05.045
– ident: e_1_2_10_52_1
  doi: 10.1243/09544119JEIM631
– ident: e_1_2_10_38_1
  doi: 10.1177/1687814016664703
– ident: e_1_2_10_53_1
– ident: e_1_2_10_17_1
  doi: 10.1115/1.3138285
– ident: e_1_2_10_20_1
  doi: 10.1016/j.spinee.2011.11.001
– ident: e_1_2_10_30_1
  doi: 10.1097/BRS.0b013e31817ecc57
– ident: e_1_2_10_7_1
  doi: 10.1016/j.clinbiomech.2019.12.023
– ident: e_1_2_10_33_1
  doi: 10.1533/ijcr.2003.0243
– ident: e_1_2_10_22_1
  doi: 10.3171/spi.2004.1.1.0122
– ident: e_1_2_10_40_1
  doi: 10.1115/1.4025101
– ident: e_1_2_10_64_1
  doi: 10.1002/cnm.3440
– ident: e_1_2_10_23_1
  doi: 10.1016/j.actbio.2018.05.002
– ident: e_1_2_10_57_1
  doi: 10.1016/j.jmbbm.2019.103400
– ident: e_1_2_10_48_1
  doi: 10.1089/neu.1988.5.187
– ident: e_1_2_10_36_1
  doi: 10.1123/jab.27.4.330
– ident: e_1_2_10_37_1
  doi: 10.1089/neu.2010.1332
– ident: e_1_2_10_63_1
  doi: 10.3171/jns.1988.69.2.0276
– ident: e_1_2_10_61_1
  doi: 10.1146/annurev.fluid.29.1.123
– ident: e_1_2_10_58_1
  doi: 10.1007/8415_2011_83
– ident: e_1_2_10_24_1
  doi: 10.4271/2006-22-0025
– ident: e_1_2_10_44_1
  doi: 10.1097/BRS.0b013e3181894fd3
– start-page: 240
  year: 2011
  ident: e_1_2_10_3_1
  article-title: Explicit finite element method applied to impact biomechanics problems
  publication-title: IRCOBI Conf Proc
  contributor:
    fullname: Cronin DS
– ident: e_1_2_10_56_1
  doi: 10.1007/s10439‐012‐0519‐2
– volume: 14
  start-page: 51
  issue: 1
  year: 2012
  ident: e_1_2_10_15_1
  article-title: Mechanical properties of cervical dura mater
  publication-title: Acta Bioeng Biomech
  contributor:
    fullname: Mazgajczyk E
– ident: e_1_2_10_59_1
  doi: 10.1002/nme.1651
– ident: e_1_2_10_19_1
  doi: 10.1007/s12565‐017‐0412‐z
– ident: e_1_2_10_21_1
  doi: 10.3389/fbioe.2021.693120
– ident: e_1_2_10_65_1
– ident: e_1_2_10_14_1
  doi: 10.1016/j.jmbbm.2014.02.014
– ident: e_1_2_10_51_1
– ident: e_1_2_10_41_1
  doi: 10.1089/neu.2019.6840
– ident: e_1_2_10_18_1
  doi: 10.1007/978-3-319-09522-6_20
– ident: e_1_2_10_54_1
– ident: e_1_2_10_62_1
– ident: e_1_2_10_46_1
  doi: 10.1016/j.expneurol.2004.09.016
– ident: e_1_2_10_26_1
  doi: 10.1016/j.actbio.2017.12.024
– ident: e_1_2_10_42_1
  doi: 10.1016/j.clinbiomech.2020.02.009
– ident: e_1_2_10_11_1
  doi: 10.1007/s00586‐003‐0625‐9
– ident: e_1_2_10_4_1
  doi: 10.1016/j.clinbiomech.2018.03.019
– ident: e_1_2_10_25_1
– ident: e_1_2_10_45_1
  doi: 10.1089/neu.2015.3956
– ident: e_1_2_10_9_1
  doi: 10.1115/1.4033794
SSID ssj0000299973
Score 2.3875275
Snippet Spinal cord impacts can have devastating consequences. Computational models can investigate such impacts but require biofidelic numerical representations of...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e3570
SubjectTerms Cerebrospinal fluid
Compression
Computational efficiency
Computer applications
Constitutive models
Dura mater
Finite element method
finite element model
Fluid mechanics
Fluid-structure interaction
Human body
human body model
Hydrodynamics
impact
Impact response
Impact tests
Mathematical models
Mechanical analysis
Numerical methods
Pellets
Representations
Smooth particle hydrodynamics
Spinal cord
Title Comparison of numerical methods for cerebrospinal fluid representation and fluid–structure interaction during transverse impact of a finite element spinal cord model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.3570
https://www.ncbi.nlm.nih.gov/pubmed/34997836
https://www.proquest.com/docview/2638035692
https://search.proquest.com/docview/2618226647
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsQwEA7qyYv_P6urjCDeqt2kf_Emq7IXF0EFbyWbJiBoV7b27jv4EL6XT-JM0lZEBMFTD0kzbZKZfJNkvmHsMBEilZkQgYwjdFDizARKmDgQoRYyVgiCC9oaGN2k4_vs_IJock7bWBjPD9FtuJFmOHtNCq4m1ckXaagun45FnJK7jk6Ci94Q1932SohmVrrzZe7uzEkhW-rZkJ-0735fjH4gzO-A1a04l8v_-dYVttTgTDjzE2OVzZlyjS03mBMaja7W2fuwS0QIUwtl7U9wHsGnlq4AQS1oM0PXmTKMUJv2sX4owLFhtpFLJaiy8AUfr2-ek7aeGSAyipkPnQAfEAkvtDjSXRAsdRGaJFaBfSDwC8bfZodGFLnG4JL1bLC7y4vb4ShokjcEWkQyDGJc-qwdoLfIIxubUA-0HEwSLbXlMizUwFGVIRzToiDMwdHQRjaVKefKEifMJlsop6XZZsATgyhH2iSN0FsyJrN2oqRRoSmySEnZYwftKObPnqMj92zMPMeez6nne6zfDm_eaGmVczQ-oYgTybGJrhj1iw5NVGmmNdVBDwxRTJT22JafFp0Q_FEXBdNjR270f5WeD8dX9Nz5a8VdtsgpzsJdduuzBRw3s8fmq6Led_P8E-RgApE
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4VeoAL25a_bWmZSohbIGvnz-qp2rLaClhVKkjcIuPYEhLNVrvNve_AQ_BefZLO2EkqhJCQesrBjp14PPY3Y883AAeZlLkqpIxUmpCBkhY20tKmkYyNVKkmEFyxa2D6PZ9dFV9OmCbnUxcLE_gheocba4Zfr1nB2SF9_I811NQ_jmSak73-MsloHnL8hvzWO1hiWmiVP2EW_tackqojn43Fcffyw-3oEcZ8CFn9njMZ_NfXvoKNFmri5zA3XsMLW7-BQQs7sVXq5Sbcj_tchDh3WDfhEOcWQ3bpJRKuRWMXZD1zkhFu0902NxV6QswueKlGXVeh4M_vu0BL2ywsMh_FIkRPYIiJxF-8P_J1ECr1QZrcrUZ3w_gXbbjQjm1XbB2jz9ezBZeTk4vxNGrzN0RGJiqOUtr9nBuRwSgSl9rYjIwaXWdGGSdUXOmRZysjRGZkxbBD0FqbuFzlQmjHtDDbsFrPa7sLKDJLQEe5LCdRC2sL5661sjq2VZFopYbwsRNj-TPQdJSBkFmUNPIlj_wQ9jr5lq2iLktB608s00wJaqIvJhXjcxNd23nDdcgIIyCT5EPYCfOi74R-1AfCDOHQi__J3svx7Jyfb59bcR_WphfnZ-XZ19npO1gXHHbh777twSrJ0L6HlWXVfPCT_i8gEwa5
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB61VKp66UILdGGBqVT1Fsja-TM3tLACtV0htZV6i4xjS0g0i3abe9-hD8F78STM2EkQqpCQOOVgx5PYnvE3tucbgE-ZlLkqpIxUmpCDkhY20tKmkYyNVKkmEFzx1sDp93z2qzg-YZqcwy4WJvBD9BturBneXrOCX1fu4J401NS_92Wak7v-KiEUzrz5Up73-ysx2VnlD5iFvzSnpOq4Z2Nx0L38cDX6D2I-RKx-yZkOnvOxq_C2BZp4FGbGGryw9TsYtKATW5VevoebSZ-JEOcO6yYc4VxhyC29REK1aOyCfGdOMcJtuqvmskJPh9mFLtWo6yoU3P79F0hpm4VFZqNYhNgJDBGR-IdXR74MQqU-RJPFanSXjH7Rhuvs2Ipi3xh9tp51-Dk9-TE5jdrsDZGRiYqjlNY-58bkLorEpTY2Y6PGF5lRxgkVV3rsucoIjxlZMegQZGkTl6tcCO2YFGYDVup5bT8AiswSzFEuyxNyl6wtnLvQyurYVkWilRrCx24Uy-tA0lEGOmZRUs-X3PNDGHXDW7ZquiwFWZ9YppkS1ERfTArGpya6tvOG65ALRjAmyYewGaZFL4R-1IfBDOGzH_1HpZeT2Td-bj214h68Pj-ell_PZl-24Y3gmAt_8W0EKzSEdgdeLqtm10_5O_dsBV8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+numerical+methods+for+cerebrospinal+fluid+representation+and+fluid%E2%80%93structure+interaction+during+transverse+impact+of+a+finite+element+spinal+cord+model&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Rycman%2C+Aleksander&rft.au=McLachlin%2C+Stewart&rft.au=Cronin%2C+Duane+S.&rft.date=2022-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=38&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcnm.3570&rft.externalDBID=10.1002%252Fcnm.3570&rft.externalDocID=CNM3570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon