Comparison of numerical methods for cerebrospinal fluid representation and fluid–structure interaction during transverse impact of a finite element spinal cord model
Spinal cord impacts can have devastating consequences. Computational models can investigate such impacts but require biofidelic numerical representations of the neural tissues and fluid–structure interaction with cerebrospinal fluid. Achieving this biofidelity is challenging, particularly for effici...
Saved in:
Published in: | International journal for numerical methods in biomedical engineering Vol. 38; no. 3; pp. e3570 - n/a |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
01-03-2022
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Spinal cord impacts can have devastating consequences. Computational models can investigate such impacts but require biofidelic numerical representations of the neural tissues and fluid–structure interaction with cerebrospinal fluid. Achieving this biofidelity is challenging, particularly for efficient implementation of the cerebrospinal fluid in full computational human body models. The goal of this study was to assess the biofidelity and computational efficiency of fluid–structure interaction methods representing the cerebrospinal fluid interacting with the spinal cord, dura, and pia mater using experimental pellet impact test data from bovine spinal cords. Building on an existing finite element model of the spinal cord and pia mater, an orthotropic hyperelastic constitutive model was proposed for the dura mater and fit to literature data. The dura mater and cerebrospinal fluid were integrated with the existing finite element model to assess four fluid–structure interaction methods under transverse impact: Lagrange, pressurized volume, smoothed particle hydrodynamics, and arbitrary Lagrangian–Eulerian. The Lagrange method resulted in an overly stiff mechanical response, whereas the pressurized volume method over‐predicted compression of the neural tissues. Both the smoothed particle hydrodynamics and arbitrary Lagrangian–Eulerian methods were able to effectively model the impact response of the pellet on the dura mater, outflow of the cerebrospinal fluid, and compression of the spinal cord; however, the arbitrary Lagrangian–Eulerian compute time was approximately five times higher than smoothed particle hydrodynamics. Crucial to implementation in human body models, the smoothed particle hydrodynamics method provided a computationally efficient and representative approach to model spinal cord fluid–structure interaction during transverse impact.
Computational modeling of fluid–structure interaction during spinal cord impact was investigated to examine numerical methods for cerebrospinal fluid (CSF) deformation. Lagrange, Pressurized Volume (PV), Smoothed Particle Hydrodynamics (SPH), and Arbitrary Lagrangian–Eulerian (ALE) methods were compared against experimental transverse compression data for the spinal cord‐CSF‐dura mater complex. The SPH and ALE methods captured outflow of the CSF in the impact zone and were in the best agreement with the experiments. The SPH method provided a significant computational benefit over the ALE method. |
---|---|
AbstractList | Spinal cord impacts can have devastating consequences. Computational models can investigate such impacts but require biofidelic numerical representations of the neural tissues and fluid–structure interaction with cerebrospinal fluid. Achieving this biofidelity is challenging, particularly for efficient implementation of the cerebrospinal fluid in full computational human body models. The goal of this study was to assess the biofidelity and computational efficiency of fluid–structure interaction methods representing the cerebrospinal fluid interacting with the spinal cord, dura, and pia mater using experimental pellet impact test data from bovine spinal cords. Building on an existing finite element model of the spinal cord and pia mater, an orthotropic hyperelastic constitutive model was proposed for the dura mater and fit to literature data. The dura mater and cerebrospinal fluid were integrated with the existing finite element model to assess four fluid–structure interaction methods under transverse impact: Lagrange, pressurized volume, smoothed particle hydrodynamics, and arbitrary Lagrangian–Eulerian. The Lagrange method resulted in an overly stiff mechanical response, whereas the pressurized volume method over‐predicted compression of the neural tissues. Both the smoothed particle hydrodynamics and arbitrary Lagrangian–Eulerian methods were able to effectively model the impact response of the pellet on the dura mater, outflow of the cerebrospinal fluid, and compression of the spinal cord; however, the arbitrary Lagrangian–Eulerian compute time was approximately five times higher than smoothed particle hydrodynamics. Crucial to implementation in human body models, the smoothed particle hydrodynamics method provided a computationally efficient and representative approach to model spinal cord fluid–structure interaction during transverse impact. Spinal cord impacts can have devastating consequences. Computational models can investigate such impacts but require biofidelic numerical representations of the neural tissues and fluid–structure interaction with cerebrospinal fluid. Achieving this biofidelity is challenging, particularly for efficient implementation of the cerebrospinal fluid in full computational human body models. The goal of this study was to assess the biofidelity and computational efficiency of fluid–structure interaction methods representing the cerebrospinal fluid interacting with the spinal cord, dura, and pia mater using experimental pellet impact test data from bovine spinal cords. Building on an existing finite element model of the spinal cord and pia mater, an orthotropic hyperelastic constitutive model was proposed for the dura mater and fit to literature data. The dura mater and cerebrospinal fluid were integrated with the existing finite element model to assess four fluid–structure interaction methods under transverse impact: Lagrange, pressurized volume, smoothed particle hydrodynamics, and arbitrary Lagrangian–Eulerian. The Lagrange method resulted in an overly stiff mechanical response, whereas the pressurized volume method over‐predicted compression of the neural tissues. Both the smoothed particle hydrodynamics and arbitrary Lagrangian–Eulerian methods were able to effectively model the impact response of the pellet on the dura mater, outflow of the cerebrospinal fluid, and compression of the spinal cord; however, the arbitrary Lagrangian–Eulerian compute time was approximately five times higher than smoothed particle hydrodynamics. Crucial to implementation in human body models, the smoothed particle hydrodynamics method provided a computationally efficient and representative approach to model spinal cord fluid–structure interaction during transverse impact. Computational modeling of fluid–structure interaction during spinal cord impact was investigated to examine numerical methods for cerebrospinal fluid (CSF) deformation. Lagrange, Pressurized Volume (PV), Smoothed Particle Hydrodynamics (SPH), and Arbitrary Lagrangian–Eulerian (ALE) methods were compared against experimental transverse compression data for the spinal cord‐CSF‐dura mater complex. The SPH and ALE methods captured outflow of the CSF in the impact zone and were in the best agreement with the experiments. The SPH method provided a significant computational benefit over the ALE method. |
Author | Rycman, Aleksander McLachlin, Stewart Cronin, Duane S. |
Author_xml | – sequence: 1 givenname: Aleksander orcidid: 0000-0002-7650-8703 surname: Rycman fullname: Rycman, Aleksander organization: University of Waterloo – sequence: 2 givenname: Stewart surname: McLachlin fullname: McLachlin, Stewart organization: University of Waterloo – sequence: 3 givenname: Duane S. orcidid: 0000-0001-7538-0560 surname: Cronin fullname: Cronin, Duane S. email: dscronin@uwaterloo.ca organization: University of Waterloo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34997836$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1uFDEUhC0UREKIxAmQJTbZdPBPjz1eohF_UoANrFse-xkcddvNszsoO-6QQ3AvToInM0QICW_8pPpcZbsek6OUExDylLMLzph44dJ0IVeaPSAngvWs06bXR_ezNMfkrJQr1pYwxmj5iBzLvg1rqU7Iz02eZoux5ERzoGmZAKOzI52gfs2-0JCROkDYYi5zTE0J4xI9RZgRCqRqa2xnbfJ74deP21JxcXVBoDFVQOvuCL9gTF9oRZvKNWBpakt2dRdraYgpVqAwwtQ86SHKZfR0yh7GJ-RhsGOBs8N-Sj6_fvVp87a7_Pjm3eblZefam1i3WjMeAtdciz6sgDnuDN8qZ1wQhnnLWa-kEqp30nNhpLDe90EbLYQNigt5Ss73vjPmbwuUOkyxOBhHmyAvZRCKr4VQqtcNff4PepUXbNfeUXLN5EqZvwxd-8CCEIYZ42TxZuBs2PU3tP6GXX8NfXYwXLYT-HvwT1sN6PbA9zjCzX-Nhs2H93eGvwG2zqmp |
CitedBy_id | crossref_primary_10_1007_s10439_022_03089_7 crossref_primary_10_1038_s43856_023_00430_6 crossref_primary_10_1007_s10856_022_06704_0 crossref_primary_10_1007_s10439_023_03428_2 crossref_primary_10_1016_j_xnsj_2023_100246 crossref_primary_10_1007_s43452_023_00758_9 |
Cites_doi | 10.1016/j.jbiomech.2011.01.035 10.1016/j.jbiomech.2014.04.042 10.3171/2009.1.SPINE08286 10.1002/cnm.2612 10.1016/j.clinbiomech.2020.02.008 10.1016/j.jspd.2017.04.008 10.1115/1.4034171 10.1089/neu.2006.0149 10.1089/neu.2007.0348 10.1016/j.jbiomech.2012.01.025 10.1007/978-3-030-11659-0 10.1097/00000539‐199906000‐00022 10.1080/02688699550040927 10.1007/s10439‐010‐9924‐6 10.1542/peds.89.5.895 10.1097/00000542‐199608000‐00014 10.1016/0090‐3019(82)90284‐1 10.1016/j.actbio.2018.05.045 10.1243/09544119JEIM631 10.1177/1687814016664703 10.1115/1.3138285 10.1016/j.spinee.2011.11.001 10.1097/BRS.0b013e31817ecc57 10.1016/j.clinbiomech.2019.12.023 10.1533/ijcr.2003.0243 10.3171/spi.2004.1.1.0122 10.1115/1.4025101 10.1002/cnm.3440 10.1016/j.actbio.2018.05.002 10.1016/j.jmbbm.2019.103400 10.1089/neu.1988.5.187 10.1123/jab.27.4.330 10.1089/neu.2010.1332 10.3171/jns.1988.69.2.0276 10.1146/annurev.fluid.29.1.123 10.1007/8415_2011_83 10.4271/2006-22-0025 10.1097/BRS.0b013e3181894fd3 10.1007/s10439‐012‐0519‐2 10.1002/nme.1651 10.1007/s12565‐017‐0412‐z 10.3389/fbioe.2021.693120 10.1016/j.jmbbm.2014.02.014 10.1089/neu.2019.6840 10.1007/978-3-319-09522-6_20 10.1016/j.expneurol.2004.09.016 10.1016/j.actbio.2017.12.024 10.1016/j.clinbiomech.2020.02.009 10.1007/s00586‐003‐0625‐9 10.1016/j.clinbiomech.2018.03.019 10.1089/neu.2015.3956 10.1115/1.4033794 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | NPM AAYXX CITATION 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/cnm.3570 |
DatabaseName | PubMed CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Civil Engineering Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Civil Engineering Abstracts CrossRef PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2040-7947 |
EndPage | n/a |
ExternalDocumentID | 10_1002_cnm_3570 34997836 CNM3570 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: General Motors of Canada Ltd. – fundername: Honda Research & Development Americas, Inc. – fundername: Stellantis – fundername: General Motors of Canada – fundername: Global Human Body Models Consortium – fundername: Natural Sciences and Engineering Research Council of Canada – fundername: Compute Canada |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 4.4 50Z 51W 51X 52N 52O 52P 52S 52T 52U 52W 52X 53G 66C 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABDBF ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WRC WXSBR WYISQ XG1 XV2 ~IA ~WT NPM AAMNL AAYXX CITATION 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c3490-5801ff171724f5e0c1c91b6c9cf290da104636264c3d12932add4f79722af6123 |
IEDL.DBID | 33P |
ISSN | 2040-7939 |
IngestDate | Fri Aug 16 23:39:32 EDT 2024 Thu Oct 10 22:13:50 EDT 2024 Thu Nov 21 22:16:35 EST 2024 Sat Sep 28 08:20:49 EDT 2024 Sat Aug 24 00:56:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | fluid-structure interaction spinal cord finite element model cerebrospinal fluid human body model impact |
Language | English |
License | 2022 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3490-5801ff171724f5e0c1c91b6c9cf290da104636264c3d12932add4f79722af6123 |
Notes | Funding information General Motors of Canada Ltd.; Global Human Body Models Consortium; Honda Research & Development Americas, Inc.; Stellantis; General Motors of Canada; Natural Sciences and Engineering Research Council of Canada; Compute Canada ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7538-0560 0000-0002-7650-8703 |
PMID | 34997836 |
PQID | 2638035692 |
PQPubID | 2034586 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2618226647 proquest_journals_2638035692 crossref_primary_10_1002_cnm_3570 pubmed_primary_34997836 wiley_primary_10_1002_cnm_3570_CNM3570 |
PublicationCentury | 2000 |
PublicationDate | March 2022 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: Chichester |
PublicationTitle | International journal for numerical methods in biomedical engineering |
PublicationTitleAlternate | Int J Numer Method Biomed Eng |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 1982; 17 1981; 103 2004; 4 1999; 88 2011; 11 2008; 33 2004; 1 2012; 14 2016; 33 2018; 6 2021; 37 2009; 10 2006; 67 2003; 8 2008; 25 2006; 2007 2018; 74 2019; 2020 2011; 28 2011; 27 2018; 75 1992; 89 2007; 24 2021; 9 2005; 191 1995; 9 2010; 38 2011 2018; 2020 2009 1998 2008 2020; 38 1997; 29 2014; 47 2006 2018; 64 2019; 100 2018; 68 2020; 74 1988; 69 1988; 5 2004; 13 2019 2011; 44 1996; 85 2018 2013; 135 2009; 223 2016; 138 2015 2014 2018; 93 2014; 30 2012; 45 2014; 34 2016; 8 2012; 40 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Roache PJ (e_1_2_10_60_1) 1998 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Persson C (e_1_2_10_49_1) 2009 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 Mazgajczyk E (e_1_2_10_15_1) 2012; 14 e_1_2_10_20_1 e_1_2_10_41_1 Cronin DS (e_1_2_10_3_1) 2011 e_1_2_10_52_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_26_1 Tabiei A (e_1_2_10_39_1) 2004; 4 e_1_2_10_47_1 |
References_xml | – year: 2011 – volume: 74 start-page: 79 year: 2020 end-page: 86 article-title: A comprehensive finite element model of surgical treatment for cervical myelopathy publication-title: Clin Biomech – year: 2009 – start-page: 14 year: 2008 end-page: 21 – volume: 38 start-page: 975 issue: 3 year: 2010 end-page: 983 article-title: Poisson's ratio and strain rate dependency of the constitutive behavior of spinal dura mater publication-title: Ann Biomed Eng – volume: 40 start-page: 1530 issue: 7 year: 2012 end-page: 1544 article-title: Development of a finite element model for blast brain injury and the effects of CSF cavitation publication-title: Ann Biomed Eng – volume: 138 issue: 8 year: 2016 article-title: Biomechanical behaviors in three types of spinal cord injury mechanisms publication-title: J Biomech Eng – volume: 2007 start-page: 637 year: 2006 end-page: 649 – volume: 17 start-page: 213 issue: 3 year: 1982 end-page: 217 article-title: Mechanical and neurological response of cat spinal cord under static loading publication-title: Surg Neurol – volume: 14 start-page: 51 issue: 1 year: 2012 end-page: 58 article-title: Mechanical properties of cervical dura mater publication-title: Acta Bioeng Biomech – volume: 28 start-page: 113 issue: 1 year: 2011 end-page: 125 article-title: The importance of fluid‐structure interaction in spinal trauma models publication-title: J Neurotrauma – volume: 25 start-page: 38 issue: 1 year: 2008 end-page: 51 article-title: Mechanical properties of dura mater from the rat brain and spinal cord publication-title: J Neurotrauma – volume: 47 start-page: 2820 issue: 11 year: 2014 end-page: 2825 article-title: Effect of bone fragment impact velocity on biomechanical parameters related to spinal cord injury: a finite element study publication-title: J Biomech – volume: 9 start-page: 9 year: 2021 article-title: A hyper‐viscoelastic continuum‐level finite element model of the spinal cord assessed for transverse indentation and impact loading publication-title: Front Bioeng Biotechnol – volume: 33 start-page: 439 issue: 5 year: 2016 end-page: 459 article-title: A unilateral cervical spinal cord contusion injury model in non‐human primates ( ) publication-title: J Neurotrauma – start-page: 1 year: 2009 end-page: 8 – year: 2018 – volume: 30 start-page: 470 issue: 4 year: 2014 end-page: 489 article-title: Head and brain response to blast using sagittal and transverse finite element models publication-title: Int J Numer Methods Biomed Eng – volume: 191 start-page: 251 issue: 2 year: 2005 end-page: 265 article-title: Stepwise motor and all‐or‐none sensory recovery is associated with nonlinear sparing after incremental spinal cord injury in rats publication-title: Exp Neurol – year: 1998 – volume: 33 start-page: 580 issue: 17 year: 2008 end-page: 588 article-title: The effect of cerebrospinal fluid on the biomechanics of spinal cord: an ex vivo bovine model using bovine and physical surrogate spinal cord publication-title: Spine – volume: 135 issue: 11 year: 2013 article-title: Development of a finite element human head model partially validated with thirty five experimental cases publication-title: J Biomech Eng – volume: 11 start-page: 1121 issue: 12 year: 2011 end-page: 1127 article-title: Analysis of dural sac thickness in human spine—cadaver study with confocal infrared laser microscope publication-title: Spine J – volume: 88 start-page: 1317 issue: 6 year: 1999 end-page: 1321 article-title: Lumbar dura mater biomechanics: experimental characterization and scanning electron microscopy observatios publication-title: Anesth Analg – volume: 9 start-page: 639 issue: 5 year: 1995 end-page: 644 article-title: Physical properties of cerebrospinal fluid of relevance to shunt function. 1: The effect of protein upon CSF viscosity publication-title: Br J Neurosurg – volume: 10 start-page: 315 issue: 4 year: 2009 end-page: 323 article-title: The effect of bone fragment size and cerebrospinal fluid on spinal cord deformation during trauma: an ex vivo study publication-title: J Neurosurg Spine – volume: 44 start-page: 1078 issue: 6 year: 2011 end-page: 1082 article-title: Compression behavior of porcine spinal cord white matter publication-title: J Biomech – volume: 2020 start-page: 58 issue: 74 year: 2019 end-page: 65 article-title: Numerical investigation of the relative effect of disc bulging and ligamentum flavum hypertrophy on the mechanism of central cord syndrome publication-title: Clin Biomech – start-page: 411 year: 2015 end-page: 434 – volume: 64 start-page: 1 year: 2018 end-page: 13 article-title: Engineering approaches to understanding mechanisms of spinal column injury leading to spinal cord injury publication-title: Clin Biomech – volume: 4 start-page: 25 issue: 2 year: 2004 end-page: 44 article-title: Transient response of a projectile in gun launch simulation using Lagrangian and ALE methods publication-title: Aerosp Eng – volume: 67 start-page: 841 year: 2006 end-page: 867 article-title: A stabilized nodally integrated tetrahedral publication-title: Int J Numer Methods Eng – volume: 89 start-page: 895 issue: 5 year: 1992 end-page: 897 article-title: A simple method of estimating cerebrospinal fluid pressure during lumbar puncture publication-title: Pediatrics – volume: 34 start-page: 146 year: 2014 end-page: 153 article-title: Biaxial response of ovine spinal cord dura mater publication-title: J Mech Behav Biomed Mater – volume: 6 start-page: 12 issue: 1 year: 2018 end-page: 19 article-title: Biomechanical simulation of stresses and strains exerted on the spinal cord and nerves during scoliosis correction maneuvers publication-title: Spine Deformity – volume: 24 start-page: 492 issue: 3 year: 2007 end-page: 507 article-title: Immediate damage to the blood‐spinal cord barrier due to mechanical trauma publication-title: J Neurotrauma – volume: 138 issue: 9 year: 2016 article-title: The transverse isotropy of spinal cord white matter under dynamic load publication-title: J Biomech Eng – year: 2019 – volume: 13 start-page: 481 issue: 6 year: 2004 end-page: 488 article-title: A dynamic investigation of the burst fracture process using a combined experimental and finite element approach publication-title: Eur Spine J – volume: 27 start-page: 330 issue: 4 year: 2011 end-page: 335 article-title: The effect of cerebrospinal fluid thickness on traumatic spinal cord deformation publication-title: J Appl Biomech – volume: 223 start-page: 1003 issue: 8 year: 2009 end-page: 1019 article-title: A finite element method parametric study of the dynamic response of the human brain with different cerebrospinal fluid constitutive properties publication-title: Proc Inst Mech Eng H J Eng Med – volume: 100 issue: June year: 2019 article-title: Cavitation threshold evaluation of porcine cerebrospinal fluid using a polymeric split Hopkinson pressure bar‐confinement chamber apparatus publication-title: J Mech Behav Biomed Mater – year: 2015 – start-page: 240 year: 2011 end-page: 254 article-title: Explicit finite element method applied to impact biomechanics problems publication-title: IRCOBI Conf Proc – volume: 8 start-page: 353 issue: 4 year: 2003 end-page: 366 article-title: The creation of three‐dimensional finite element models for simulating head impact biomechanics publication-title: Int J Crashworthiness – volume: 69 start-page: 276 issue: 2 year: 1988 end-page: 282 article-title: The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study publication-title: J Neurosurg – volume: 2020 start-page: 186 issue: 72 year: 2018 end-page: 194 article-title: Dynamics of spinal cord compression with different patterns of thoracolumbar burst fractures: numerical simulations using finite element modelling publication-title: Clin Biomech – volume: 8 start-page: 1 issue: 8 year: 2016 end-page: 8 article-title: Geometrical variations in white and gray matter affect the biomechanics of spinal cord injuries more than the arachnoid space publication-title: Adv Mech Eng – volume: 68 start-page: 78 year: 2018 end-page: 89 article-title: Comparison of in vivo and ex vivo viscoelastic behavior of the spinal cord publication-title: Acta Biomater – volume: 38 start-page: 698 issue: 6 year: 2020 end-page: 717 article-title: Correlating tissue mechanics and spinal cord injury: patient‐specific finite element models of unilateral cervical contusion spinal cord injury in non‐human primates publication-title: J Neurotrauma – volume: 29 start-page: 123 year: 1997 end-page: 160 article-title: Quantification of uncertainty in computational fluid dynamics publication-title: Annu Rev Fluid Mech – volume: 103 start-page: 231 issue: 4 year: 1981 end-page: 298 article-title: Biomechanics: mechanical properties of living tissues publication-title: J Biomech Eng – volume: 93 start-page: 284 issue: 2 year: 2018 end-page: 290 article-title: Analysis of dural sac thickness in the human cervical spine publication-title: Anat Sci Int – volume: 37 start-page: 1 issue: 4 year: 2021 end-page: 17 article-title: Smoothed particle hydrodynamic modelling of the cerebrospinal fluid for brain biomechanics: accuracy and stability publication-title: Int J Numer Methods Biomed Eng – volume: 1 start-page: 122 issue: 1 year: 2004 end-page: 127 article-title: Mechanical properties and function of the spinal pia mater publication-title: J Neurosurg Spine – volume: 45 start-page: 1003 issue: 6 year: 2012 end-page: 1010 article-title: Mechanical indicators of injury severity are decreased with increased thecal sac dimension in a bench‐top model of contusion type spinal cord injury publication-title: J Biomech – volume: 74 start-page: 260 year: 2018 end-page: 269 article-title: Compressive mechanical characterization of non‐human primate spinal cord white matter publication-title: Acta Biomater – year: 2006 – volume: 33 start-page: 812 issue: 22 year: 2008 end-page: 819 article-title: The distribution of tissue damage in the spinal cord is influenced by the contusion velocity publication-title: Spine – volume: 5 start-page: 187 issue: 3 year: 1988 end-page: 208 article-title: Interaction of contact velocity and cord compression in determining the severity of spinal cord injury publication-title: J Neurotrauma – start-page: 1 year: 2014 end-page: 12 – volume: 75 start-page: 15 year: 2018 end-page: 18 article-title: Viscoelasticity of spinal cord and meningeal tissues publication-title: Acta Biomater – volume: 85 start-page: 326 issue: 2 year: 1996 end-page: 330 article-title: Density of lumbar cerebrospinal fluid in pregnant and nonpregnant humans publication-title: Anesthesiology – ident: e_1_2_10_28_1 doi: 10.1016/j.jbiomech.2011.01.035 – volume-title: Biomechanical Modelling of the Spinal Cord and Bone Fragment Interactions During A Vertebral Burst Fracture year: 2009 ident: e_1_2_10_49_1 contributor: fullname: Persson C – ident: e_1_2_10_10_1 doi: 10.1016/j.jbiomech.2014.04.042 – volume-title: Verification and validation in computational science and engineering year: 1998 ident: e_1_2_10_60_1 contributor: fullname: Roache PJ – ident: e_1_2_10_31_1 doi: 10.3171/2009.1.SPINE08286 – ident: e_1_2_10_55_1 doi: 10.1002/cnm.2612 – ident: e_1_2_10_6_1 doi: 10.1016/j.clinbiomech.2020.02.008 – ident: e_1_2_10_8_1 doi: 10.1016/j.jspd.2017.04.008 – ident: e_1_2_10_43_1 doi: 10.1115/1.4034171 – ident: e_1_2_10_66_1 – ident: e_1_2_10_47_1 doi: 10.1089/neu.2006.0149 – ident: e_1_2_10_16_1 doi: 10.1089/neu.2007.0348 – volume: 4 start-page: 25 issue: 2 year: 2004 ident: e_1_2_10_39_1 article-title: Transient response of a projectile in gun launch simulation using Lagrangian and ALE methods publication-title: Aerosp Eng contributor: fullname: Tabiei A – ident: e_1_2_10_32_1 doi: 10.1016/j.jbiomech.2012.01.025 – ident: e_1_2_10_2_1 doi: 10.1007/978-3-030-11659-0 – ident: e_1_2_10_12_1 doi: 10.1097/00000539‐199906000‐00022 – ident: e_1_2_10_29_1 – ident: e_1_2_10_50_1 doi: 10.1080/02688699550040927 – ident: e_1_2_10_13_1 doi: 10.1007/s10439‐010‐9924‐6 – ident: e_1_2_10_34_1 doi: 10.1542/peds.89.5.895 – ident: e_1_2_10_35_1 doi: 10.1097/00000542‐199608000‐00014 – ident: e_1_2_10_5_1 doi: 10.1016/0090‐3019(82)90284‐1 – ident: e_1_2_10_27_1 doi: 10.1016/j.actbio.2018.05.045 – ident: e_1_2_10_52_1 doi: 10.1243/09544119JEIM631 – ident: e_1_2_10_38_1 doi: 10.1177/1687814016664703 – ident: e_1_2_10_53_1 – ident: e_1_2_10_17_1 doi: 10.1115/1.3138285 – ident: e_1_2_10_20_1 doi: 10.1016/j.spinee.2011.11.001 – ident: e_1_2_10_30_1 doi: 10.1097/BRS.0b013e31817ecc57 – ident: e_1_2_10_7_1 doi: 10.1016/j.clinbiomech.2019.12.023 – ident: e_1_2_10_33_1 doi: 10.1533/ijcr.2003.0243 – ident: e_1_2_10_22_1 doi: 10.3171/spi.2004.1.1.0122 – ident: e_1_2_10_40_1 doi: 10.1115/1.4025101 – ident: e_1_2_10_64_1 doi: 10.1002/cnm.3440 – ident: e_1_2_10_23_1 doi: 10.1016/j.actbio.2018.05.002 – ident: e_1_2_10_57_1 doi: 10.1016/j.jmbbm.2019.103400 – ident: e_1_2_10_48_1 doi: 10.1089/neu.1988.5.187 – ident: e_1_2_10_36_1 doi: 10.1123/jab.27.4.330 – ident: e_1_2_10_37_1 doi: 10.1089/neu.2010.1332 – ident: e_1_2_10_63_1 doi: 10.3171/jns.1988.69.2.0276 – ident: e_1_2_10_61_1 doi: 10.1146/annurev.fluid.29.1.123 – ident: e_1_2_10_58_1 doi: 10.1007/8415_2011_83 – ident: e_1_2_10_24_1 doi: 10.4271/2006-22-0025 – ident: e_1_2_10_44_1 doi: 10.1097/BRS.0b013e3181894fd3 – start-page: 240 year: 2011 ident: e_1_2_10_3_1 article-title: Explicit finite element method applied to impact biomechanics problems publication-title: IRCOBI Conf Proc contributor: fullname: Cronin DS – ident: e_1_2_10_56_1 doi: 10.1007/s10439‐012‐0519‐2 – volume: 14 start-page: 51 issue: 1 year: 2012 ident: e_1_2_10_15_1 article-title: Mechanical properties of cervical dura mater publication-title: Acta Bioeng Biomech contributor: fullname: Mazgajczyk E – ident: e_1_2_10_59_1 doi: 10.1002/nme.1651 – ident: e_1_2_10_19_1 doi: 10.1007/s12565‐017‐0412‐z – ident: e_1_2_10_21_1 doi: 10.3389/fbioe.2021.693120 – ident: e_1_2_10_65_1 – ident: e_1_2_10_14_1 doi: 10.1016/j.jmbbm.2014.02.014 – ident: e_1_2_10_51_1 – ident: e_1_2_10_41_1 doi: 10.1089/neu.2019.6840 – ident: e_1_2_10_18_1 doi: 10.1007/978-3-319-09522-6_20 – ident: e_1_2_10_54_1 – ident: e_1_2_10_62_1 – ident: e_1_2_10_46_1 doi: 10.1016/j.expneurol.2004.09.016 – ident: e_1_2_10_26_1 doi: 10.1016/j.actbio.2017.12.024 – ident: e_1_2_10_42_1 doi: 10.1016/j.clinbiomech.2020.02.009 – ident: e_1_2_10_11_1 doi: 10.1007/s00586‐003‐0625‐9 – ident: e_1_2_10_4_1 doi: 10.1016/j.clinbiomech.2018.03.019 – ident: e_1_2_10_25_1 – ident: e_1_2_10_45_1 doi: 10.1089/neu.2015.3956 – ident: e_1_2_10_9_1 doi: 10.1115/1.4033794 |
SSID | ssj0000299973 |
Score | 2.3875275 |
Snippet | Spinal cord impacts can have devastating consequences. Computational models can investigate such impacts but require biofidelic numerical representations of... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e3570 |
SubjectTerms | Cerebrospinal fluid Compression Computational efficiency Computer applications Constitutive models Dura mater Finite element method finite element model Fluid mechanics Fluid-structure interaction Human body human body model Hydrodynamics impact Impact response Impact tests Mathematical models Mechanical analysis Numerical methods Pellets Representations Smooth particle hydrodynamics Spinal cord |
Title | Comparison of numerical methods for cerebrospinal fluid representation and fluid–structure interaction during transverse impact of a finite element spinal cord model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.3570 https://www.ncbi.nlm.nih.gov/pubmed/34997836 https://www.proquest.com/docview/2638035692 https://search.proquest.com/docview/2618226647 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsQwEA7qyYv_P6urjCDeqt2kf_Emq7IXF0EFbyWbJiBoV7b27jv4EL6XT-JM0lZEBMFTD0kzbZKZfJNkvmHsMBEilZkQgYwjdFDizARKmDgQoRYyVgiCC9oaGN2k4_vs_IJock7bWBjPD9FtuJFmOHtNCq4m1ckXaagun45FnJK7jk6Ci94Q1932SohmVrrzZe7uzEkhW-rZkJ-0735fjH4gzO-A1a04l8v_-dYVttTgTDjzE2OVzZlyjS03mBMaja7W2fuwS0QIUwtl7U9wHsGnlq4AQS1oM0PXmTKMUJv2sX4owLFhtpFLJaiy8AUfr2-ek7aeGSAyipkPnQAfEAkvtDjSXRAsdRGaJFaBfSDwC8bfZodGFLnG4JL1bLC7y4vb4ShokjcEWkQyDGJc-qwdoLfIIxubUA-0HEwSLbXlMizUwFGVIRzToiDMwdHQRjaVKefKEifMJlsop6XZZsATgyhH2iSN0FsyJrN2oqRRoSmySEnZYwftKObPnqMj92zMPMeez6nne6zfDm_eaGmVczQ-oYgTybGJrhj1iw5NVGmmNdVBDwxRTJT22JafFp0Q_FEXBdNjR270f5WeD8dX9Nz5a8VdtsgpzsJdduuzBRw3s8fmq6Led_P8E-RgApE |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4VeoAL25a_bWmZSohbIGvnz-qp2rLaClhVKkjcIuPYEhLNVrvNve_AQ_BefZLO2EkqhJCQesrBjp14PPY3Y883AAeZlLkqpIxUmpCBkhY20tKmkYyNVKkmEFyxa2D6PZ9dFV9OmCbnUxcLE_gheocba4Zfr1nB2SF9_I811NQ_jmSak73-MsloHnL8hvzWO1hiWmiVP2EW_tackqojn43Fcffyw-3oEcZ8CFn9njMZ_NfXvoKNFmri5zA3XsMLW7-BQQs7sVXq5Sbcj_tchDh3WDfhEOcWQ3bpJRKuRWMXZD1zkhFu0902NxV6QswueKlGXVeh4M_vu0BL2ywsMh_FIkRPYIiJxF-8P_J1ECr1QZrcrUZ3w_gXbbjQjm1XbB2jz9ezBZeTk4vxNGrzN0RGJiqOUtr9nBuRwSgSl9rYjIwaXWdGGSdUXOmRZysjRGZkxbBD0FqbuFzlQmjHtDDbsFrPa7sLKDJLQEe5LCdRC2sL5661sjq2VZFopYbwsRNj-TPQdJSBkFmUNPIlj_wQ9jr5lq2iLktB608s00wJaqIvJhXjcxNd23nDdcgIIyCT5EPYCfOi74R-1AfCDOHQi__J3svx7Jyfb59bcR_WphfnZ-XZ19npO1gXHHbh777twSrJ0L6HlWXVfPCT_i8gEwa5 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB61VKp66UILdGGBqVT1Fsja-TM3tLACtV0htZV6i4xjS0g0i3abe9-hD8F78STM2EkQqpCQOOVgx5PYnvE3tucbgE-ZlLkqpIxUmpCDkhY20tKmkYyNVKkmEFzx1sDp93z2qzg-YZqcwy4WJvBD9BturBneXrOCX1fu4J401NS_92Wak7v-KiEUzrz5Up73-ysx2VnlD5iFvzSnpOq4Z2Nx0L38cDX6D2I-RKx-yZkOnvOxq_C2BZp4FGbGGryw9TsYtKATW5VevoebSZ-JEOcO6yYc4VxhyC29REK1aOyCfGdOMcJtuqvmskJPh9mFLtWo6yoU3P79F0hpm4VFZqNYhNgJDBGR-IdXR74MQqU-RJPFanSXjH7Rhuvs2Ipi3xh9tp51-Dk9-TE5jdrsDZGRiYqjlNY-58bkLorEpTY2Y6PGF5lRxgkVV3rsucoIjxlZMegQZGkTl6tcCO2YFGYDVup5bT8AiswSzFEuyxNyl6wtnLvQyurYVkWilRrCx24Uy-tA0lEGOmZRUs-X3PNDGHXDW7ZquiwFWZ9YppkS1ERfTArGpya6tvOG65ALRjAmyYewGaZFL4R-1IfBDOGzH_1HpZeT2Td-bj214h68Pj-ell_PZl-24Y3gmAt_8W0EKzSEdgdeLqtm10_5O_dsBV8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+numerical+methods+for+cerebrospinal+fluid+representation+and+fluid%E2%80%93structure+interaction+during+transverse+impact+of+a+finite+element+spinal+cord+model&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Rycman%2C+Aleksander&rft.au=McLachlin%2C+Stewart&rft.au=Cronin%2C+Duane+S.&rft.date=2022-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=38&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcnm.3570&rft.externalDBID=10.1002%252Fcnm.3570&rft.externalDocID=CNM3570 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon |