Conservation laws for equations of mixed elliptic-hyperbolic and degenerate types

For partial differential equations of mixed elliptic-hyperbolic and degenerate types which are the Euler-Lagrange equations for an associated Lagrangian, invariance with respect to changes in independent and dependent variables is investigated, as are results in the classification of continuous one-...

Full description

Saved in:
Bibliographic Details
Published in:Duke mathematical journal Vol. 127; no. 2; pp. 251 - 290
Main Authors: Lupo, Daniela, Payne, Kevin R.
Format: Journal Article
Language:English
Published: DUKE University Press 01-04-2005
Duke University Press
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For partial differential equations of mixed elliptic-hyperbolic and degenerate types which are the Euler-Lagrange equations for an associated Lagrangian, invariance with respect to changes in independent and dependent variables is investigated, as are results in the classification of continuous one-parameter symmetry groups. For the variational and divergence symmetries, conservation laws are derived via the method of multipliers. The conservation laws resulting from anisotropic dilations are applied to prove uniqueness theorems for linear and nonlinear problems, and the invariance under dilations of the linear part is used to derive critical exponent phenomena and to obtain localized energy estimates for supercritical problems.
AbstractList For partial differential equations of mixed elliptic-hyperbolic and degenerate types which are the Euler-Lagrange equations for an associated Lagrangian, invariance with respect to changes in independent and dependent variables is investigated, as are results in the classification of continuous one-parameter symmetry groups. For the variational and divergence symmetries, conservation laws are derived via the method of multipliers. The conservation laws resulting from anisotropic dilations are applied to prove uniqueness theorems for linear and nonlinear problems, and the invariance under dilations of the linear part is used to derive critical exponent phenomena and to obtain localized energy estimates for supercritical problems.
For partial differential equations of mixed elliptic-hyperbolic and degenerate types which are the Euler-Lagrange equations for an associated Lagrangian, invariance with respect to changes in independent and dependent variables is investigated, as are results in the classification of continuous one-parameter symmetry groups. For the variational and divergence symmetries, conservation laws are derived via the method of multipliers. The conservation laws resulting from anisotropic dilations are applied to prove uniqueness theorems for linear and nonlinear problems, and the invariance under dilations of the linear part is used to derive critical exponent phenomena and to obtain localized energy estimates for supercritical problems.
Author Lupo, Daniela
Payne, Kevin R.
Author_xml – sequence: 1
  givenname: Daniela
  surname: Lupo
  fullname: Lupo, Daniela
– sequence: 2
  givenname: Kevin R.
  surname: Payne
  fullname: Payne, Kevin R.
BookMark eNo9kFtvGyEQhVGVSnUuPyESf4CG6wJvjZwmqWSpatM8IxaGFne9OLBp438f3-R5OZoz852Hc47OxjICQteMfmacqZsnShknmlpJqCSMa86J-YBmTElNtLDmDM1OL5_QeWvL3Wo7PkM_5mVsUP_5KZcRD_5_w6lUDC-ve6fhkvAqv0HEMAx5PeVA_mzWUPsy5ID9GHGE3zBC9RPgaXtpl-hj8kODq6NeoOf7r7_mj2Tx_eHb_HZBgpBmIslYk1JPFe96a4Fbbn0Kfa8VE5qHZJT0ILS0QXraM8Wjip4JwyNoKiMXF-jLIXddyxLCBK9hyNGta175unHFZzd_Xhzdo8TV0rHtdNQatYtQh4hQS2sV0olm1O2qdftq3a43R6XbV-vMliMHLrcJ3k6Qr39dp4VWTnfKMUH53c-7LSXeAacjfro
CitedBy_id crossref_primary_10_1007_s00032_021_00326_x
crossref_primary_10_2140_pjm_2018_296_181
crossref_primary_10_1142_S0219199711004531
crossref_primary_10_1016_j_na_2014_05_009
crossref_primary_10_2140_pjm_2021_314_29
crossref_primary_10_1007_s10231_005_0173_5
crossref_primary_10_1007_s11856_009_0097_7
crossref_primary_10_1016_j_jde_2017_08_033
crossref_primary_10_1016_j_geomphys_2008_03_003
crossref_primary_10_1088_1751_8113_44_9_095004
crossref_primary_10_1016_j_aml_2010_12_005
crossref_primary_10_1016_j_jmaa_2006_11_012
Cites_doi 10.1007/978-1-4612-4350-2
10.1002/cpa.3160360405
10.1215/S0012-7094-77-04430-1
10.1515/9781400863174
10.1098/rspa.1956.0119
10.1002/cpa.3160090104
10.1215/S0012-7094-99-09814-9
10.1512/iumj.1953.2.52005
10.1006/jdeq.2001.4139
10.2307/2946554
10.1002/cpa.3160110306
10.1002/cpa.3160140327
10.1090/cbms/073
10.1007/s10231-005-0173-5
10.1090/S0273-0979-00-00857-0
10.1002/cpa.3160450604
10.1002/cpa.3031
10.1016/B978-0-12-531680-4.50012-5
10.1002/cpa.3160390607
10.1002/cpa.3160060402
10.1512/iumj.1992.41.41005
ContentType Journal Article
Copyright Copyright 2005 Duke University Press
Copyright_xml – notice: Copyright 2005 Duke University Press
DBID BSCLL
AAYXX
CITATION
DOI 10.1215/S0012-7094-04-12722-8
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1547-7398
EndPage 290
ExternalDocumentID oai_CULeuclid_euclid_dmj_1111609852
10_1215_S0012_7094_04_12722_8
ark_67375_765_1302DRD4_1
GroupedDBID --Z
-ET
-~X
186
6TJ
ABCQX
ABDNZ
ABZEH
ACNCT
ACUXE
ADNWM
AEILP
AENEX
AI.
AINRN
ALMA_UNASSIGNED_HOLDINGS
BSCLL
CS3
DU5
EBS
EJD
H~9
K-O
L7B
MVM
OHT
P2P
PUASD
RBU
RDP
RDU
RPE
S10
SJN
TN5
TWZ
UPT
VH1
VQP
WH7
XOL
XSW
ZCG
AAYXX
CITATION
08R
AALRV
ABEFU
ABFLS
ACYGS
ADYLN
AETEA
AFMIJ
ET
F20
FA8
QZG
X
XJT
Z
ZKB
ZY4
ID FETCH-LOGICAL-c348t-f898ffb0526b99e2929afcbb751372cf854ae3749c4a0b152d5da1382de704d23
ISSN 0012-7094
IngestDate Sat Jan 08 04:19:04 EST 2022
Thu Nov 21 22:49:40 EST 2024
Wed Oct 30 09:31:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-f898ffb0526b99e2929afcbb751372cf854ae3749c4a0b152d5da1382de704d23
Notes zbl:1078.35078
pii:S0012-7094-04-12722-8
pe:euclid.dmj/1111609852
mr:2130413
istex:657058C3DB7EB20E5A410809E75FC855A83E7620
ark:/67375/765-1302DRD4-1
doi:10.1215/S0012-7094-04-12722-8
PageCount 40
ParticipantIDs projecteuclid_primary_oai_CULeuclid_euclid_dmj_1111609852
crossref_primary_10_1215_S0012_7094_04_12722_8
istex_primary_ark_67375_765_1302DRD4_1
PublicationCentury 2000
PublicationDate 2005-04-01
PublicationDateYYYYMMDD 2005-04-01
PublicationDate_xml – month: 04
  year: 2005
  text: 2005-04-01
  day: 01
PublicationDecade 2000
PublicationTitle Duke mathematical journal
PublicationYear 2005
Publisher DUKE University Press
Duke University Press
Publisher_xml – name: DUKE University Press
– name: Duke University Press
References 22
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
14
15
cr-split#-23.1
16
cr-split#-23.2
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 24
  doi: 10.1007/978-1-4612-4350-2
– ident: 4
  doi: 10.1002/cpa.3160360405
– ident: 32
  doi: 10.1215/S0012-7094-77-04430-1
– ident: 12
– ident: 5
  doi: 10.1515/9781400863174
– ident: 19
  doi: 10.1098/rspa.1956.0119
– ident: 20
  doi: 10.1002/cpa.3160090104
– ident: 33
– ident: 2
  doi: 10.1215/S0012-7094-99-09814-9
– ident: 28
  doi: 10.1512/iumj.1953.2.52005
– ident: 14
– ident: 17
  doi: 10.1006/jdeq.2001.4139
– ident: 29
  doi: 10.2307/2946554
– ident: 8
  doi: 10.1002/cpa.3160110306
– ident: 21
  doi: 10.1002/cpa.3160140327
– ident: #cr-split#-23.1
– ident: 31
  doi: 10.1090/cbms/073
– ident: 9
– ident: 26
  doi: 10.1007/s10231-005-0173-5
– ident: 7
– ident: 22
  doi: 10.1090/S0273-0979-00-00857-0
– ident: 3
– ident: 11
– ident: 13
  doi: 10.1002/cpa.3160450604
– ident: 18
  doi: 10.1002/cpa.3031
– ident: 34
– ident: 15
– ident: 30
– ident: 25
  doi: 10.1016/B978-0-12-531680-4.50012-5
– ident: 16
  doi: 10.1002/cpa.3160390607
– ident: 6
– ident: #cr-split#-23.2
– ident: 27
– ident: 1
  doi: 10.1002/cpa.3160060402
– ident: 10
  doi: 10.1512/iumj.1992.41.41005
SSID ssj0012962
Score 1.8835893
Snippet For partial differential equations of mixed elliptic-hyperbolic and degenerate types which are the Euler-Lagrange equations for an associated Lagrangian,...
For partial differential equations of mixed elliptic-hyperbolic and degenerate types which are the Euler-Lagrange equations for an associated Lagrangian,...
SourceID projecteuclid
crossref
istex
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 251
SubjectTerms 35A05
35B33
35L65
35M10
58J70
Conservation laws
Critical exponents
Equations of mixed type
Invariance and symmetry properties [See also 35A30]
Title Conservation laws for equations of mixed elliptic-hyperbolic and degenerate types
URI https://api.istex.fr/ark:/67375/765-1302DRD4-1/fulltext.pdf
http://projecteuclid.org/euclid.dmj/1111609852
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKdoHDxE8x2JAPiMvkkthOHB-ntWhiMMG6StwiJ3bGYG23thHjv9-znTopG9I4cEkrq6mt9z4_v-f3_Bmht9JkVBoWkyqlBeGqKInSKiay4ipVOpE-o3s4EsffssGQD3u9VbF72_ZfNQ1toGt7cvYftB3-FBrgO-gcnqB1eN5L7_YGztVG696F-rXwpN5XdVvzNjm_BjfTMnGCvSjJdwhF54XlB3aZBG3OHBX10rj92UXXfXW1HJPA9NoyT4S6nvpy1p5cDyb_i_rtd06PYB2e7p301zYbkk6NiqsYGR8Nbx1h7JrXGNz1yN9a3DeNReWCCOavmg4m1_MBNNiiXQPa0M_6tZj6q0RvmXnPiDEK_RFHviggrs7adW2Vy_9juQtFiGr-01a1iSQXaWLTenRwMuA5hNKbFKyWNZqjj8chJUVl6qnnmz6b42AwlPd3DmTN0dm0c_baFt76_TVTlxfnuuPJnD5GW00Igvc9dp6gnpk-RY8-B60unqGvXRRhiyIMKMIBRXhWYYcifAeKMKAItyjCDkXP0fjD8PTgkDSXb5CS8WxJqkxmVVVYOqBCSkPBjVZVWRQiiZmgZZUlXBkmuCy5igrwAnUCc5xlVBsRcU3ZC7QxnU3NS4QNFzSumDBxGvGCMsUULbXSWUKZBBd1G_VXksovPcdKbmNTEG3uRJtb0eYR6MaKNocX3jl5hl__TZXbSK4JPLxgSdUPxp-a1uZDT364gDiNJAzt1X07eY0etlNlB20s57XZRQ8Wun7jEHQD8SmSGw
link.rule.ids 230,315,782,786,887,27933,27934
linkProvider Multiple Vendors
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conservation+laws+for+equations+of+mixed+elliptic-hyperbolic+and+degenerate+types&rft.jtitle=Duke+mathematical+journal&rft.au=Lupo%2C+Daniela&rft.au=Payne%2C+Kevin+R.&rft.date=2005-04-01&rft.pub=DUKE+University+Press&rft.issn=0012-7094&rft.eissn=1547-7398&rft.volume=127&rft.issue=2&rft.spage=251&rft.epage=290&rft_id=info:doi/10.1215%2FS0012-7094-04-12722-8&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_765_1302DRD4_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-7094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-7094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-7094&client=summon