Ammonium promoting methane oxidation by stimulating the Type Ia methane-oxidizing bacteria in tidal flat sediments of the Yangtze River estuary

Estuary and coastal environments have essential ecosystem functions in greenhouse gas sinks and removal of nitrogen pollution. Methane-oxidizing bacteria (MOB) and ammonia-oxidizing bacteria (AOB) communities play critical functions in the estuary's tidal flat sediments. Therefore, the effects...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment Vol. 793; p. 148470
Main Authors: Xia, Fei, Jiang, Qiu-Yue, Zhu, Ting, Zou, Bin, Liu, Huan, Quan, Zhe-Xue
Format: Journal Article
Language:English
Published: Elsevier B.V 01-11-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Estuary and coastal environments have essential ecosystem functions in greenhouse gas sinks and removal of nitrogen pollution. Methane-oxidizing bacteria (MOB) and ammonia-oxidizing bacteria (AOB) communities play critical functions in the estuary's tidal flat sediments. Therefore, the effects of ammonium on MOB communities and methane on AOB communities need to be further explained. In this study, microcosm incubations with different contents of ammonium or methane were conducted for a relatively short (24 h) or long (28 days) period with tidal flat sediments from the Yangtze River estuary. Subsequently, the tagged highly degenerate primer PCR and DNA-based stable isotope probing method were employed to demonstrate the effects on MOB and AOB populations. The results indicated that the methane consumption was enhanced with ammonium supplements within 24 h of incubation. Supplement of 2 μmol/g d.w.s (μmol per gram dry weight soil) NH4+ increased the amount of MOB and its proportion to the total bacteria (p < 0.05) for 28 days incubation. The ammonium supplement increased the proportion of Methylomonas and Methylobacter based on the 16S rRNA gene. According to the functional gene analysis, the MOB primarily engaged in methane oxidation include Methylomonas, Methylobacter, Methylomicrobium, and Methylosarcina, which were associated with Type Ia MOB. It suggested that ammonium supplement may promote methane oxidation by stimulating the Type Ia MOB in tidal flat sediments of the Yangtze River estuary. The current research helps understand the effect of ammonium on methane consumption in the estuary and coastal environments. [Display omitted] •NH4+ enhances methane oxidation in tidal flat sediment within 24 h incubation.•Ammonium promotes methane oxidation by stimulating the Type Ia MOBs.•Type Ia MOBs participate in methane oxidation in tidal flat sediments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.148470