Caveolin-1, caveolin-3 and VEGF expression in the masticatory muscles of mdx mice
Duchenne muscular dystrophy (DMD) and murine X-linked muscular dystrophy (mdx), its murine model, are characterized by muscle damage and muscle weakness associated with inflammation and new vessel formation. Caveolins, dystrophin-associated proteins, are involved in the pathogenesis of DMD, because...
Saved in:
Published in: | Folia histochemica et cytobiologica Vol. 49; no. 2; pp. 291 - 298 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Poland
Wydawnictwo Via Medica
01-01-2011
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Duchenne muscular dystrophy (DMD) and murine X-linked muscular dystrophy (mdx), its murine model, are characterized by muscle damage and muscle weakness associated with inflammation and new vessel formation. Caveolins, dystrophin-associated proteins, are involved in the pathogenesis of DMD, because increased numbers of caveolae are found in DMD and mdx hindlimb muscles. Caveolae influence angiogenesis due to their content of vascular endothelial growth factor (VEGF) receptors. Orofacial muscles in mdx mice undergo muscle necrosis followed by muscle regeneration. To ascertain the role of caveolins and VEGF in the pathogenesis of dystrophic masticatory muscles, we examined the expression of caveolin-1 (cav-1), caveolin-3 (cav-3) and VEGF in control and mdx mice. In mdx masticatory muscles, no changes in transcript and protein levels of VEGF were found, whereas cav-1 and cav-3 expression was increased. Using immunohistochemistry, a strong sarcolemmal staining of caveolin-3 in regenerated muscle fibers was found. Furthermore, immunohistochemistry with the caveolin-1 antibody showed an increase in the amount of blood vessels in areas with regenerating muscle fibers. Dystrophic masticatory muscles showed changes comparable to those of hindlimb muscles in the expression of cav-1 and cav-3. The angiogenesis seems to be unaffected in the jaw muscles of mdx mice. We speculate that the increased caveolin expression could cause extensive and efficient muscle regeneration. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0239-8508 1897-5631 |
DOI: | 10.5603/FHC.2011.0041 |