Effect of shaped filter design on dose and image quality in breast CT
The purpose of this study was to investigate the effect of shaped filters specifically designed for dedicated breast computed tomography (CT) scanners on dose and image quality. Optimization of filter shape and material in fan direction was performed using two different design methods, one aiming at...
Saved in:
Published in: | Physics in medicine & biology Vol. 58; no. 12; p. 4205 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
21-06-2013
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of this study was to investigate the effect of shaped filters specifically designed for dedicated breast computed tomography (CT) scanners on dose and image quality. Optimization of filter shape and material in fan direction was performed using two different design methods, one aiming at homogeneous noise distributions in the CT images and the other aiming at a uniform dose distribution in the breast. The optimal filter thickness as a function of fan angle was determined iteratively to fulfil the above mentioned criteria for each breast diameter. Different filter materials (aluminium, copper, carbon, polytetrafluoroethylene) and breast phantoms with diameters between 80-180 mm were investigated. Noise uniformity in the reconstructed images, obtained from CT simulations based on ray-tracing methods, and dose in the breast, calculated with a Monte Carlo software tool, were used as figure of merit. Furthermore, CT-value homogeneity, the distribution of noise in cone direction, spatial resolution from centre to periphery and the contrast-to-noise ratio weighted by dose (CNRD) were evaluated. In addition, the decrease of scatter due to shaped filters was investigated. Since only few or one filter are practical in clinical CT systems, the effects of one shaped filter for different breast diameters were also investigated. In this case the filter, designed for the largest breast diameter, was simulated at variable source-to-filter distances depending on breast diameter. With the filter design method aiming at uniform noise distribution best results were obtained for aluminium as the filter material. Noise uniformity improved from 20} down to 5} and dose was reduced by about 30-40} for all breast diameters. No decrease of noise uniformity in cone direction, CT-value homogeneity, spatial resolution and the CNRD was detected with the shaped filter. However, a small improvement of CNRD was observed. Furthermore, a scatter reduction of about 20-30} and a more homogeneous scatter distribution were reached which led to reduced cupping artefacts. The simulations with one shaped filter at variable source-to-filter distance resulted in nearly homogeneous noise distributions and comparable dose reduction for all breast diameters. In conclusion, by means of shaped filters designed for breast CT, significant dose reduction can be achieved at unimpaired image quality. One shaped filter designed for the largest breast diameter used with variable source-to-filter distance appears to be the best solution for breast CT. |
---|---|
ISSN: | 1361-6560 |
DOI: | 10.1088/0031-9155/58/12/4205 |