Track-based self-supervised classification of dynamic obstacles
This work introduces a self-supervised architecture for robust classification of moving obstacles in urban environments. Our approach presents a hierarchical scheme that relies on the stability of a subset of features given by a sensor to perform an initial robust classification based on unsupervise...
Saved in:
Published in: | Autonomous robots Vol. 29; no. 2; pp. 219 - 233 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Boston
Springer US
01-08-2010
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This work introduces a self-supervised architecture for robust classification of moving obstacles in urban environments. Our approach presents a hierarchical scheme that relies on the stability of a subset of features given by a sensor to perform an initial robust classification based on unsupervised techniques. The obtained results are used as labels to train a set of supervised classifiers. The outcomes obtained with the second sensor can be used for higher level tasks such as segmentation or to refine the within-clusters discrimination. The proposed architecture is evaluated for a particular realization based on range and visual information which produces track-based labeling that is then employed to train supervised modules that perform instantaneous classification. Experiments show that the system is able to achieve 95% classification accuracy and to maintain the performance through on-line retraining when working conditions change. |
---|---|
AbstractList | This work introduces a self-supervised architecture for robust classification of moving obstacles in urban environments. Our approach presents a hierarchical scheme that relies on the stability of a subset of features given by a sensor to perform an initial robust classification based on unsupervised techniques. The obtained results are used as labels to train a set of supervised classifiers. The outcomes obtained with the second sensor can be used for higher level tasks such as segmentation or to refine the within-clusters discrimination. The proposed architecture is evaluated for a particular realization based on range and visual information which produces track-based labeling that is then employed to train supervised modules that perform instantaneous classification. Experiments show that the system is able to achieve 95% classification accuracy and to maintain the performance through on-line retraining when working conditions change. |
Author | Douillard, Bertrand Nieto, Juan Nebot, Eduardo Katz, Roman |
Author_xml | – sequence: 1 givenname: Roman surname: Katz fullname: Katz, Roman email: r.katz@acfr.usyd.edu.au organization: ARC Centre of Excellence for Autonomous Systems, Australian Centre for Field Robotics, The University of Sydney – sequence: 2 givenname: Juan surname: Nieto fullname: Nieto, Juan organization: ARC Centre of Excellence for Autonomous Systems, Australian Centre for Field Robotics, The University of Sydney – sequence: 3 givenname: Eduardo surname: Nebot fullname: Nebot, Eduardo organization: ARC Centre of Excellence for Autonomous Systems, Australian Centre for Field Robotics, The University of Sydney – sequence: 4 givenname: Bertrand surname: Douillard fullname: Douillard, Bertrand organization: ARC Centre of Excellence for Autonomous Systems, Australian Centre for Field Robotics, The University of Sydney |
BookMark | eNp1kE1LAzEQhoNUsK3-AG-LF0_RydemOYkUv6DgpZ5Dmk1k63a3ZnaF_ntTVhAELzMMPO_L8MzIpO3aQMglgxsGoG-RgWKSAgNqmBEUTsiUKS2oVlxPyBQMN1QpI87IDHELAEYDTMndOjn_QTcOQ1VgaCLFYR_SV328feMQ61h719ddW3SxqA6t29W-6DbYO98EPCen0TUYLn72nLw9PqyXz3T1-vSyvF9RL6TuaRUlQKWCjgvDpa5iHmWlTGkiOKdhEXkJkgsuA_Mli0YzJqVnIR86cC7m5Hrs3afucwjY212NPjSNa0M3oDWgjRAAi0xe_SG33ZDa_JxdaM6kUkpkiI2QTx1iCtHuU71z6WAZ2KNQOwq1Wag9CrWQM3zMYGbb95B-i_8PfQOJn3iK |
CitedBy_id | crossref_primary_10_1109_JSTARS_2015_2463118 |
Cites_doi | 10.1109/ICIP.1995.537667 10.1145/1282280.1282340 10.1109/TPAMI.2006.104 10.1023/B:VISI.0000029664.99615.94 10.5244/C.16.36 10.1016/S0031-3203(00)00146-1 10.1109/CVPR.2000.854754 10.1214/aos/1016218223 10.1109/TPAMI.1986.4767851 10.1109/34.121791 10.1109/ROBOT.1985.1087316 10.1214/ss/1009212519 10.1023/B:VISI.0000013087.49260.fb 10.1109/IROS.2008.4650636 10.1109/IROS.2003.1249281 10.1016/B978-0-08-051584-7.50027-9 10.1109/ICCV.2003.1238354 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC 2010 Autonomous Robots is a copyright of Springer, (2010). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2010 – notice: Autonomous Robots is a copyright of Springer, (2010). All Rights Reserved. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO F28 FR3 HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PQEST PQQKQ PQUKI PRINS PTHSS S0W |
DOI | 10.1007/s10514-010-9193-0 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic |
DatabaseTitleList | Technology Collection Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Architecture |
EISSN | 1573-7527 |
EndPage | 233 |
ExternalDocumentID | 2376815071 10_1007_s10514_010_9193_0 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAG ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADMVV ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEKVL AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR _50 ~02 ~EX AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ABYXP ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 7SC 7SP 7TB 8FD DWQXO F28 FR3 JQ2 L7M L~C L~D PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c347t-df400d5e7f89247df2476d5969f0aa708f26042324e1c61f971144c1ec617e223 |
IEDL.DBID | AEJHL |
ISSN | 0929-5593 |
IngestDate | Fri Oct 25 05:44:45 EDT 2024 Tue Nov 19 05:54:07 EST 2024 Fri Nov 22 00:28:08 EST 2024 Sat Dec 16 12:10:26 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Learning and adaptive systems Intelligent vehicles Obstacle classification Self-supervised learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c347t-df400d5e7f89247df2476d5969f0aa708f26042324e1c61f971144c1ec617e223 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 872145553 |
PQPubID | 326361 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_907933008 proquest_journals_872145553 crossref_primary_10_1007_s10514_010_9193_0 springer_journals_10_1007_s10514_010_9193_0 |
PublicationCentury | 2000 |
PublicationDate | 2010-08-01 |
PublicationDateYYYYMMDD | 2010-08-01 |
PublicationDate_xml | – month: 08 year: 2010 text: 2010-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: Dordrecht |
PublicationTitle | Autonomous robots |
PublicationTitleAbbrev | Auton Robot |
PublicationYear | 2010 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | DempsterA.LairdN. M.RubinD. B.Maximum likelihood from incomplete data via the EM algorithmJournal of the Royal Statistical Society19773911380364.62022501537 LuberM.ArrasK. O.PlagemannC.BurgardW.Classifying dynamic objects: an unsupervised learning approachRobotics: science and systems2008CambridgeMIT Press LoweD.Discriminative image features from scale-invariant keypointsInternational Journal of Computer Vision20046029111010.1023/B:VISI.0000029664.99615.94 SunZ.BebisG.MillerR.On-road vehicle detection: a reviewIEEE Transactions on Pattern Analysis and Machine Intelligence200628569471110.1109/TPAMI.2006.104 ACFR (2006). PAATV/UTE projects (Technical Report). ACFR, Sydney TU, LCR, del Sur UN. TsuchiyaM.FujiyoshiH.Evaluating feature importance for object classification in visual surveillanceICPR ’06: Proceedings of the 18th international conference on pattern recognition2006WashingtonIEEE Computer Society978981 BrooksC. A.IagnemmaK. D.Self-supervised classification for planetary rover terrain sensing2007 IEEE aerospace conference2007Big SkyIEEE DudaR.HartP.StorkD.Pattern classification2001New YorkWiley0968.68140 McLachlanG.KrishnanT.The EM algorithm and extensions1997New YorkWiley0882.62012 HoetingJ.MadiganD.RafteryA. E.VolinskyC. T.Bayesian model averaging: a tutorialStatistical Science19991443824011059.6252510.1214/ss/10092125191765176 Moravec, H., & Elfes, A. (1985). High resolution maps from wide angle sonar. In International conference on robotics and automation, IEEE. Stavens, D., & Thrun, S. (2006). A self-supervised terrain roughness estimator for off-road autonomous driving. In Conference on uncertainty in AI (UAI), Cambridge, MA. WuT.LinC.WengR. C.Probability estimates for multi-class classification by pairwise couplingJournal of Machine Learning Research2003597510052248006 FriedmanJ. H.HastieT.TibshiraniR.Additive logistic regression: a statistical view of boostingAnnals of Statistics20002823373741106.6232310.1214/aos/10162182231790002 RabinerL. R.WaibelA.LeeK.A tutorial on hidden Markov Models and selected applications in speech recognitionReadings in speech recognition1990San MateoMorgan Kaufmann267296 Zhang, Q., & Pless, R. (2004). Extrinsic calibration for a camera and laser ranger finder (improves camera intrinsic calibration). In IEEE/RSJ international conference on intelligent robots and systems, IEEE, Japan. Simoncelli, E., & Freeman, W. (1995). The steerable pyramid: a flexible architecture for multi-scale derivative computation. In International conference on image processing (Vol. 3, pp. 444–447). Chang, C., & Lin, C. (2008). A library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/. DARPA (2007). DARPA urban challenge. http://www.darpa.mil/grandchallenge/. BeslP.McKayN.A method for registration of 3-D shapesIEEE Transactions on Pattern Analysis and Machine Intelligence199214223925610.1109/34.121791 Elfes, A. (1989). Occupancy grids: a probabilistic framework for robot perception and navigation. PhD thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University. Matas, J., Chum, O., Urban, M., & Pajdla, T. (2002). Robust wide baseline stereo from maximally stable extremal regions. In British machine vision conference 2002, British Machine Vision Association. SerreT.WolfL.PoggioT.Object recognition with features inspired by visual cortexInternational conference on computer vision and pattern recognition2005San DiegoIEEE Weber, M., Welling, M., & Perona, P. (2000). Towards automatic discovery of categories. In CVPR ’00: Proceedings of the 2000 conference on computer vision and pattern recognition (CVPR ’00), IEEE Computer Society, Hilton Head Island, South Carolina. AttiasH.Inferring parameters and structure of latent variable models by variational BayesProceedings of the fifteenth conference on uncertainty in artificial intelligence1999San FranciscoMorgan Kaufmann CaruanaR.Niculescu-MizilA.An empirical comparison of supervised learning algorithmsICML ’06: Proceedings of the 23rd international conference on machine learning2006New YorkACM CannyJ. F.A computational approach to edge detectionIEEE Transactions on Pattern Analysis and Machine Intelligence19868667969810.1109/TPAMI.1986.4767851 Katz, R., Nieto, J., & Nebot, E. (2008). Probabilistic scheme for laser based motion detection. In IEEE/RSJ international conference on intelligent robots and systems (pp. 161–166). IEEE, Nice, France. Cohen, I., Cozman, F. G., & Bronstein, A. (2002). The effect of unlabeled data on generative classifiers, with application to model selection. HP Laboratories Palo Alto. Frank, O., Nieto, J., Guivant, J., & Scheding, S. (2003). Multiple target tracking using sequential Monte Carlo methods and statistical data association. In IEEE/RSJ international conference on intelligent robots and systems, IEEE, Las Vegas, USA. SchultzD.A probabilistic exemplar approach to combine laser and vision for person trackingRobotics: science and systems2006CambridgeMIT Press LuoJ.SavakisA. E.Self-supervised texture segmentation using complementary types of featuresPattern Recognition20013411207120820991.6807410.1016/S0031-3203(00)00146-1 ViolaP.JonesM.Robust real-time object detectionInternational Journal of Computer Vision200457210.1023/B:VISI.0000013087.49260.fb Ng, A., Jordan, M., & Weiss, Y. (2001). On spectral clustering: analysis and an algorithm. In NIPS: advances in neural information processing systems (Vol. 14). Zelnik-Manor, L., & Perona, P. (2004). Self tuning spectral clustering. In NIPS: advances in neural information processing systems (Vol. 17). Torralba, A., Murphy, K., Freeman, W. T., & Rubin, M. A. (2003). Context-based vision system for place and object recognition. In ICCV ’03: Proceedings of the 2003 ICCV international conference on computer vision, IEEE, Nice, France. BishopC. M.Pattern recognition and machine learning2006BerlinSpringer1107.68072 BoschA.ZissermanA.MunozX.Representing shape with a spatial pyramid kernelCIVR ’07: Proceedings of the 6th ACM international conference on image and video retrieval2007AmsterdamACM401408 DahlkampH.KaehlerA.StavensD.ThrunS.BradskiG.Self-supervised monocular road detection in desert terrainRobotics: science and systems2006CambridgeMIT Press A. Bosch (9193_CR5) 2007 9193_CR10 9193_CR31 J. H. Friedman (9193_CR17) 2000; 28 9193_CR30 T. Wu (9193_CR37) 2003; 5 9193_CR36 9193_CR12 9193_CR33 C. A. Brooks (9193_CR6) 2007 R. Caruana (9193_CR8) 2006 P. Viola (9193_CR35) 2004; 57 M. Tsuchiya (9193_CR34) 2006 A. Dempster (9193_CR13) 1977; 39 T. Serre (9193_CR29) 2005 9193_CR26 J. Hoeting (9193_CR18) 1999; 14 G. McLachlan (9193_CR24) 1997 C. M. Bishop (9193_CR4) 2006 9193_CR25 J. Luo (9193_CR22) 2001; 34 9193_CR1 9193_CR23 Z. Sun (9193_CR32) 2006; 28 M. Luber (9193_CR21) 2008 D. Schultz (9193_CR28) 2006 9193_CR9 D. Lowe (9193_CR20) 2004; 60 R. Duda (9193_CR14) 2001 P. Besl (9193_CR3) 1992; 14 J. F. Canny (9193_CR7) 1986; 8 L. R. Rabiner (9193_CR27) 1990 9193_CR39 H. Attias (9193_CR2) 1999 9193_CR16 9193_CR38 9193_CR15 H. Dahlkamp (9193_CR11) 2006 9193_CR19 |
References_xml | – ident: 9193_CR31 – ident: 9193_CR1 – ident: 9193_CR30 doi: 10.1109/ICIP.1995.537667 – ident: 9193_CR12 – ident: 9193_CR10 – start-page: 401 volume-title: CIVR ’07: Proceedings of the 6th ACM international conference on image and video retrieval year: 2007 ident: 9193_CR5 doi: 10.1145/1282280.1282340 contributor: fullname: A. Bosch – volume: 28 start-page: 694 issue: 5 year: 2006 ident: 9193_CR32 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2006.104 contributor: fullname: Z. Sun – ident: 9193_CR39 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 9193_CR20 publication-title: International Journal of Computer Vision doi: 10.1023/B:VISI.0000029664.99615.94 contributor: fullname: D. Lowe – ident: 9193_CR23 doi: 10.5244/C.16.36 – volume-title: 2007 IEEE aerospace conference year: 2007 ident: 9193_CR6 contributor: fullname: C. A. Brooks – volume-title: Robotics: science and systems year: 2008 ident: 9193_CR21 contributor: fullname: M. Luber – start-page: 978 volume-title: ICPR ’06: Proceedings of the 18th international conference on pattern recognition year: 2006 ident: 9193_CR34 contributor: fullname: M. Tsuchiya – volume-title: International conference on computer vision and pattern recognition year: 2005 ident: 9193_CR29 contributor: fullname: T. Serre – volume: 34 start-page: 2071 issue: 11 year: 2001 ident: 9193_CR22 publication-title: Pattern Recognition doi: 10.1016/S0031-3203(00)00146-1 contributor: fullname: J. Luo – ident: 9193_CR36 doi: 10.1109/CVPR.2000.854754 – volume-title: Proceedings of the fifteenth conference on uncertainty in artificial intelligence year: 1999 ident: 9193_CR2 contributor: fullname: H. Attias – volume-title: ICML ’06: Proceedings of the 23rd international conference on machine learning year: 2006 ident: 9193_CR8 contributor: fullname: R. Caruana – volume-title: The EM algorithm and extensions year: 1997 ident: 9193_CR24 contributor: fullname: G. McLachlan – volume: 28 start-page: 337 issue: 2 year: 2000 ident: 9193_CR17 publication-title: Annals of Statistics doi: 10.1214/aos/1016218223 contributor: fullname: J. H. Friedman – volume-title: Robotics: science and systems year: 2006 ident: 9193_CR28 contributor: fullname: D. Schultz – ident: 9193_CR38 – ident: 9193_CR15 – volume: 8 start-page: 679 issue: 6 year: 1986 ident: 9193_CR7 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1986.4767851 contributor: fullname: J. F. Canny – volume-title: Pattern recognition and machine learning year: 2006 ident: 9193_CR4 contributor: fullname: C. M. Bishop – volume: 14 start-page: 239 issue: 2 year: 1992 ident: 9193_CR3 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.121791 contributor: fullname: P. Besl – ident: 9193_CR25 doi: 10.1109/ROBOT.1985.1087316 – ident: 9193_CR9 – volume: 5 start-page: 975 year: 2003 ident: 9193_CR37 publication-title: Journal of Machine Learning Research contributor: fullname: T. Wu – volume-title: Pattern classification year: 2001 ident: 9193_CR14 contributor: fullname: R. Duda – volume: 14 start-page: 382 issue: 4 year: 1999 ident: 9193_CR18 publication-title: Statistical Science doi: 10.1214/ss/1009212519 contributor: fullname: J. Hoeting – volume: 57 start-page: 2 year: 2004 ident: 9193_CR35 publication-title: International Journal of Computer Vision doi: 10.1023/B:VISI.0000013087.49260.fb contributor: fullname: P. Viola – ident: 9193_CR26 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 9193_CR13 publication-title: Journal of the Royal Statistical Society contributor: fullname: A. Dempster – ident: 9193_CR19 doi: 10.1109/IROS.2008.4650636 – volume-title: Robotics: science and systems year: 2006 ident: 9193_CR11 contributor: fullname: H. Dahlkamp – ident: 9193_CR16 doi: 10.1109/IROS.2003.1249281 – start-page: 267 volume-title: Readings in speech recognition year: 1990 ident: 9193_CR27 doi: 10.1016/B978-0-08-051584-7.50027-9 contributor: fullname: L. R. Rabiner – ident: 9193_CR33 doi: 10.1109/ICCV.2003.1238354 |
SSID | ssj0009700 |
Score | 1.9830981 |
Snippet | This work introduces a self-supervised architecture for robust classification of moving obstacles in urban environments. Our approach presents a hierarchical... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 219 |
SubjectTerms | Architecture Artificial Intelligence Autonomous Classification Computer Imaging Control Engineering Labels Mechatronics Moving obstacles Obstacles Pattern Recognition and Graphics Retraining Robotics Robotics and Automation Robots Segmentation Sensors Trains Urban environments Vision |
Title | Track-based self-supervised classification of dynamic obstacles |
URI | https://link.springer.com/article/10.1007/s10514-010-9193-0 https://www.proquest.com/docview/872145553 https://search.proquest.com/docview/907933008 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ5oe9GDb2OtGg6eNGugPJY9mca2aYzxoibticA-LjXQSPn_zvAo1ehBL5ANm4UMs_t9w8x-AFwjhkhHcMOkcA1DD_FZHAQ-czRyZeGLgJcirtMX_jwLR2OSyRmsP12ki7smI1ku1Bt73RDbGeVuhUM1Z9vQRejx0be7w_Hj9KmV2q03niDwM-TLbpPL_GmQr2jUUsxvWdESbCb7_3nMA9irqaU1rHzhELZ0egS7G4KDx3CP0CQXjKBLWbl-NywvlrRaUFsSkabKofJlWZmxVPW7eitLkENS-dwJvE3Grw9TVv9CgUnX4yumDM5R5WtuQgy0uDJ4CBS-AmHsOOZ2aDCeoVytpx0ZOEZwjI886WhscI3U4RQ6aZbqM7BULDH40wOugtCTCU-Eb5sE40Mqk-We3YObxpTRslLKiFpNZLJKhFaJyCoRdu43xo7qSZNHIS9l0323B9b6Kno7pTDiVGdFHgnS83ORt_TgtrF_O8Cvtzv_U-8-7FQ1AlTmdwGd1UehL2E7V8VV7Wt0ns3no09bAMwu |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RdgAG3ohSHhmYQJYa8nA8oQpaWlG6UCQ2K_FjAaUVaf8_d3mQgmCAJZIVy4nOZ3_f6c6fAS4QQ5QruGVKeJahhwQsDsOAuQa5sghEyHMR1-ETn7xEd32SyfGqszB5tXuVksx36pXDbgjujJK3wqWiswa0fBH66Mqt3mh6P6i1dsuTJ4j8DAmzVyUzfxrkKxzVHPNbWjRHm8H2v_5zB7ZKcun0Cm_YhTWT7sHmiuTgPtwgOKlXRuClncy8WZYt57RfUFsRlabaoXy6nJl1dHFhvTNLkEVSAd0BPA_609shKy9RYMrz-YJpi6tUB4bbCEMtri0-Qo2TIGw3jnk3shjRULbWN64KXSs4Rki-cg02uEHycAjNdJaaI3B0rDD8M9dch5GvEp6IoGsTjBCpUJb73TZcVraU80IrQ9aqyGQViVaRZBWJnTuVtWW5bDIZ8Vw4PfDa4Hy-RX-nJEacmtkyk4IU_TxkLm24quxfD_Dr547_1Psc1ofTx7EcjyYPHdgoKgao6O8Emov3pTmFRqaXZ6XjfQBFQs5s |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sC6IH32Ktjxw8KUsb89jsqRTbUrUUQQVvS7qPi5IU0_5_Z_KwVfQgXgIhyybMzma-Yb75FuACY4hyBbdMCc8y9JCAxWEYMNcgVhaBCHku4jp65JOXqD8gmZxu1QuTs92rkmTR00AqTcm8PdO2vdL4hoGeUSFXuERAq0HDx0QGHb3RG9yNxkvd3bILBVEAQ_DsVYXNnyb5GpqWePNbiTSPPMPtf3_zDmyVoNPpFV6yC2sm2YPNFSnCfehi0FKvjIKadjLzZlm2mNF_hO4VQWziFOXL6KTW0cVB9k46RXRJxLoDeB4Onm5GrDxcgSnP53OmLe5eHRhuI0zBuLZ4CTUujrCdOOadyGKmQ1Vc37gqdK3gmDn5yjV4ww2CikOoJ2lijsDRscK00FxzHUa-mvKpCDp2ipkjEWi532nCZWVXOSs0NORSLZmsItEqkqwicXCrsrwst1MmI54LqgdeE5zPp7gPqLgRJyZdZFKQ0p-HiKYJV9VaLCf49XXHfxp9DusP_aEc307uW7BREAmIC3gC9fn7wpxCLdOLs9IHPwDCB9cv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Track-based+self-supervised+classification+of+dynamic+obstacles&rft.jtitle=Autonomous+robots&rft.au=Katz%2C+Roman&rft.au=Nieto%2C+Juan&rft.au=Nebot%2C+Eduardo&rft.au=Douillard%2C+Bertrand&rft.date=2010-08-01&rft.pub=Springer+US&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=29&rft.issue=2&rft.spage=219&rft.epage=233&rft_id=info:doi/10.1007%2Fs10514-010-9193-0&rft.externalDocID=10_1007_s10514_010_9193_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon |