Track-based self-supervised classification of dynamic obstacles

This work introduces a self-supervised architecture for robust classification of moving obstacles in urban environments. Our approach presents a hierarchical scheme that relies on the stability of a subset of features given by a sensor to perform an initial robust classification based on unsupervise...

Full description

Saved in:
Bibliographic Details
Published in:Autonomous robots Vol. 29; no. 2; pp. 219 - 233
Main Authors: Katz, Roman, Nieto, Juan, Nebot, Eduardo, Douillard, Bertrand
Format: Journal Article
Language:English
Published: Boston Springer US 01-08-2010
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This work introduces a self-supervised architecture for robust classification of moving obstacles in urban environments. Our approach presents a hierarchical scheme that relies on the stability of a subset of features given by a sensor to perform an initial robust classification based on unsupervised techniques. The obtained results are used as labels to train a set of supervised classifiers. The outcomes obtained with the second sensor can be used for higher level tasks such as segmentation or to refine the within-clusters discrimination. The proposed architecture is evaluated for a particular realization based on range and visual information which produces track-based labeling that is then employed to train supervised modules that perform instantaneous classification. Experiments show that the system is able to achieve 95% classification accuracy and to maintain the performance through on-line retraining when working conditions change.
AbstractList This work introduces a self-supervised architecture for robust classification of moving obstacles in urban environments. Our approach presents a hierarchical scheme that relies on the stability of a subset of features given by a sensor to perform an initial robust classification based on unsupervised techniques. The obtained results are used as labels to train a set of supervised classifiers. The outcomes obtained with the second sensor can be used for higher level tasks such as segmentation or to refine the within-clusters discrimination. The proposed architecture is evaluated for a particular realization based on range and visual information which produces track-based labeling that is then employed to train supervised modules that perform instantaneous classification. Experiments show that the system is able to achieve 95% classification accuracy and to maintain the performance through on-line retraining when working conditions change.
Author Douillard, Bertrand
Nieto, Juan
Nebot, Eduardo
Katz, Roman
Author_xml – sequence: 1
  givenname: Roman
  surname: Katz
  fullname: Katz, Roman
  email: r.katz@acfr.usyd.edu.au
  organization: ARC Centre of Excellence for Autonomous Systems, Australian Centre for Field Robotics, The University of Sydney
– sequence: 2
  givenname: Juan
  surname: Nieto
  fullname: Nieto, Juan
  organization: ARC Centre of Excellence for Autonomous Systems, Australian Centre for Field Robotics, The University of Sydney
– sequence: 3
  givenname: Eduardo
  surname: Nebot
  fullname: Nebot, Eduardo
  organization: ARC Centre of Excellence for Autonomous Systems, Australian Centre for Field Robotics, The University of Sydney
– sequence: 4
  givenname: Bertrand
  surname: Douillard
  fullname: Douillard, Bertrand
  organization: ARC Centre of Excellence for Autonomous Systems, Australian Centre for Field Robotics, The University of Sydney
BookMark eNp1kE1LAzEQhoNUsK3-AG-LF0_RydemOYkUv6DgpZ5Dmk1k63a3ZnaF_ntTVhAELzMMPO_L8MzIpO3aQMglgxsGoG-RgWKSAgNqmBEUTsiUKS2oVlxPyBQMN1QpI87IDHELAEYDTMndOjn_QTcOQ1VgaCLFYR_SV328feMQ61h719ddW3SxqA6t29W-6DbYO98EPCen0TUYLn72nLw9PqyXz3T1-vSyvF9RL6TuaRUlQKWCjgvDpa5iHmWlTGkiOKdhEXkJkgsuA_Mli0YzJqVnIR86cC7m5Hrs3afucwjY212NPjSNa0M3oDWgjRAAi0xe_SG33ZDa_JxdaM6kUkpkiI2QTx1iCtHuU71z6WAZ2KNQOwq1Wag9CrWQM3zMYGbb95B-i_8PfQOJn3iK
CitedBy_id crossref_primary_10_1109_JSTARS_2015_2463118
Cites_doi 10.1109/ICIP.1995.537667
10.1145/1282280.1282340
10.1109/TPAMI.2006.104
10.1023/B:VISI.0000029664.99615.94
10.5244/C.16.36
10.1016/S0031-3203(00)00146-1
10.1109/CVPR.2000.854754
10.1214/aos/1016218223
10.1109/TPAMI.1986.4767851
10.1109/34.121791
10.1109/ROBOT.1985.1087316
10.1214/ss/1009212519
10.1023/B:VISI.0000013087.49260.fb
10.1109/IROS.2008.4650636
10.1109/IROS.2003.1249281
10.1016/B978-0-08-051584-7.50027-9
10.1109/ICCV.2003.1238354
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2010
Autonomous Robots is a copyright of Springer, (2010). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC 2010
– notice: Autonomous Robots is a copyright of Springer, (2010). All Rights Reserved.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10514-010-9193-0
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
DatabaseTitleList Technology Collection

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1573-7527
EndPage 233
ExternalDocumentID 2376815071
10_1007_s10514_010_9193_0
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
_50
~02
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ABYXP
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
7SC
7SP
7TB
8FD
DWQXO
F28
FR3
JQ2
L7M
L~C
L~D
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c347t-df400d5e7f89247df2476d5969f0aa708f26042324e1c61f971144c1ec617e223
IEDL.DBID AEJHL
ISSN 0929-5593
IngestDate Fri Oct 25 05:44:45 EDT 2024
Tue Nov 19 05:54:07 EST 2024
Fri Nov 22 00:28:08 EST 2024
Sat Dec 16 12:10:26 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Learning and adaptive systems
Intelligent vehicles
Obstacle classification
Self-supervised learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-df400d5e7f89247df2476d5969f0aa708f26042324e1c61f971144c1ec617e223
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 872145553
PQPubID 326361
PageCount 15
ParticipantIDs proquest_miscellaneous_907933008
proquest_journals_872145553
crossref_primary_10_1007_s10514_010_9193_0
springer_journals_10_1007_s10514_010_9193_0
PublicationCentury 2000
PublicationDate 2010-08-01
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Dordrecht
PublicationTitle Autonomous robots
PublicationTitleAbbrev Auton Robot
PublicationYear 2010
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DempsterA.LairdN. M.RubinD. B.Maximum likelihood from incomplete data via the EM algorithmJournal of the Royal Statistical Society19773911380364.62022501537
LuberM.ArrasK. O.PlagemannC.BurgardW.Classifying dynamic objects: an unsupervised learning approachRobotics: science and systems2008CambridgeMIT Press
LoweD.Discriminative image features from scale-invariant keypointsInternational Journal of Computer Vision20046029111010.1023/B:VISI.0000029664.99615.94
SunZ.BebisG.MillerR.On-road vehicle detection: a reviewIEEE Transactions on Pattern Analysis and Machine Intelligence200628569471110.1109/TPAMI.2006.104
ACFR (2006). PAATV/UTE projects (Technical Report). ACFR, Sydney TU, LCR, del Sur UN.
TsuchiyaM.FujiyoshiH.Evaluating feature importance for object classification in visual surveillanceICPR ’06: Proceedings of the 18th international conference on pattern recognition2006WashingtonIEEE Computer Society978981
BrooksC. A.IagnemmaK. D.Self-supervised classification for planetary rover terrain sensing2007 IEEE aerospace conference2007Big SkyIEEE
DudaR.HartP.StorkD.Pattern classification2001New YorkWiley0968.68140
McLachlanG.KrishnanT.The EM algorithm and extensions1997New YorkWiley0882.62012
HoetingJ.MadiganD.RafteryA. E.VolinskyC. T.Bayesian model averaging: a tutorialStatistical Science19991443824011059.6252510.1214/ss/10092125191765176
Moravec, H., & Elfes, A. (1985). High resolution maps from wide angle sonar. In International conference on robotics and automation, IEEE.
Stavens, D., & Thrun, S. (2006). A self-supervised terrain roughness estimator for off-road autonomous driving. In Conference on uncertainty in AI (UAI), Cambridge, MA.
WuT.LinC.WengR. C.Probability estimates for multi-class classification by pairwise couplingJournal of Machine Learning Research2003597510052248006
FriedmanJ. H.HastieT.TibshiraniR.Additive logistic regression: a statistical view of boostingAnnals of Statistics20002823373741106.6232310.1214/aos/10162182231790002
RabinerL. R.WaibelA.LeeK.A tutorial on hidden Markov Models and selected applications in speech recognitionReadings in speech recognition1990San MateoMorgan Kaufmann267296
Zhang, Q., & Pless, R. (2004). Extrinsic calibration for a camera and laser ranger finder (improves camera intrinsic calibration). In IEEE/RSJ international conference on intelligent robots and systems, IEEE, Japan.
Simoncelli, E., & Freeman, W. (1995). The steerable pyramid: a flexible architecture for multi-scale derivative computation. In International conference on image processing (Vol. 3, pp. 444–447).
Chang, C., & Lin, C. (2008). A library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
DARPA (2007). DARPA urban challenge. http://www.darpa.mil/grandchallenge/.
BeslP.McKayN.A method for registration of 3-D shapesIEEE Transactions on Pattern Analysis and Machine Intelligence199214223925610.1109/34.121791
Elfes, A. (1989). Occupancy grids: a probabilistic framework for robot perception and navigation. PhD thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University.
Matas, J., Chum, O., Urban, M., & Pajdla, T. (2002). Robust wide baseline stereo from maximally stable extremal regions. In British machine vision conference 2002, British Machine Vision Association.
SerreT.WolfL.PoggioT.Object recognition with features inspired by visual cortexInternational conference on computer vision and pattern recognition2005San DiegoIEEE
Weber, M., Welling, M., & Perona, P. (2000). Towards automatic discovery of categories. In CVPR ’00: Proceedings of the 2000 conference on computer vision and pattern recognition (CVPR ’00), IEEE Computer Society, Hilton Head Island, South Carolina.
AttiasH.Inferring parameters and structure of latent variable models by variational BayesProceedings of the fifteenth conference on uncertainty in artificial intelligence1999San FranciscoMorgan Kaufmann
CaruanaR.Niculescu-MizilA.An empirical comparison of supervised learning algorithmsICML ’06: Proceedings of the 23rd international conference on machine learning2006New YorkACM
CannyJ. F.A computational approach to edge detectionIEEE Transactions on Pattern Analysis and Machine Intelligence19868667969810.1109/TPAMI.1986.4767851
Katz, R., Nieto, J., & Nebot, E. (2008). Probabilistic scheme for laser based motion detection. In IEEE/RSJ international conference on intelligent robots and systems (pp. 161–166). IEEE, Nice, France.
Cohen, I., Cozman, F. G., & Bronstein, A. (2002). The effect of unlabeled data on generative classifiers, with application to model selection. HP Laboratories Palo Alto.
Frank, O., Nieto, J., Guivant, J., & Scheding, S. (2003). Multiple target tracking using sequential Monte Carlo methods and statistical data association. In IEEE/RSJ international conference on intelligent robots and systems, IEEE, Las Vegas, USA.
SchultzD.A probabilistic exemplar approach to combine laser and vision for person trackingRobotics: science and systems2006CambridgeMIT Press
LuoJ.SavakisA. E.Self-supervised texture segmentation using complementary types of featuresPattern Recognition20013411207120820991.6807410.1016/S0031-3203(00)00146-1
ViolaP.JonesM.Robust real-time object detectionInternational Journal of Computer Vision200457210.1023/B:VISI.0000013087.49260.fb
Ng, A., Jordan, M., & Weiss, Y. (2001). On spectral clustering: analysis and an algorithm. In NIPS: advances in neural information processing systems (Vol. 14).
Zelnik-Manor, L., & Perona, P. (2004). Self tuning spectral clustering. In NIPS: advances in neural information processing systems (Vol. 17).
Torralba, A., Murphy, K., Freeman, W. T., & Rubin, M. A. (2003). Context-based vision system for place and object recognition. In ICCV ’03: Proceedings of the 2003 ICCV international conference on computer vision, IEEE, Nice, France.
BishopC. M.Pattern recognition and machine learning2006BerlinSpringer1107.68072
BoschA.ZissermanA.MunozX.Representing shape with a spatial pyramid kernelCIVR ’07: Proceedings of the 6th ACM international conference on image and video retrieval2007AmsterdamACM401408
DahlkampH.KaehlerA.StavensD.ThrunS.BradskiG.Self-supervised monocular road detection in desert terrainRobotics: science and systems2006CambridgeMIT Press
A. Bosch (9193_CR5) 2007
9193_CR10
9193_CR31
J. H. Friedman (9193_CR17) 2000; 28
9193_CR30
T. Wu (9193_CR37) 2003; 5
9193_CR36
9193_CR12
9193_CR33
C. A. Brooks (9193_CR6) 2007
R. Caruana (9193_CR8) 2006
P. Viola (9193_CR35) 2004; 57
M. Tsuchiya (9193_CR34) 2006
A. Dempster (9193_CR13) 1977; 39
T. Serre (9193_CR29) 2005
9193_CR26
J. Hoeting (9193_CR18) 1999; 14
G. McLachlan (9193_CR24) 1997
C. M. Bishop (9193_CR4) 2006
9193_CR25
J. Luo (9193_CR22) 2001; 34
9193_CR1
9193_CR23
Z. Sun (9193_CR32) 2006; 28
M. Luber (9193_CR21) 2008
D. Schultz (9193_CR28) 2006
9193_CR9
D. Lowe (9193_CR20) 2004; 60
R. Duda (9193_CR14) 2001
P. Besl (9193_CR3) 1992; 14
J. F. Canny (9193_CR7) 1986; 8
L. R. Rabiner (9193_CR27) 1990
9193_CR39
H. Attias (9193_CR2) 1999
9193_CR16
9193_CR38
9193_CR15
H. Dahlkamp (9193_CR11) 2006
9193_CR19
References_xml – ident: 9193_CR31
– ident: 9193_CR1
– ident: 9193_CR30
  doi: 10.1109/ICIP.1995.537667
– ident: 9193_CR12
– ident: 9193_CR10
– start-page: 401
  volume-title: CIVR ’07: Proceedings of the 6th ACM international conference on image and video retrieval
  year: 2007
  ident: 9193_CR5
  doi: 10.1145/1282280.1282340
  contributor:
    fullname: A. Bosch
– volume: 28
  start-page: 694
  issue: 5
  year: 2006
  ident: 9193_CR32
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2006.104
  contributor:
    fullname: Z. Sun
– ident: 9193_CR39
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 9193_CR20
  publication-title: International Journal of Computer Vision
  doi: 10.1023/B:VISI.0000029664.99615.94
  contributor:
    fullname: D. Lowe
– ident: 9193_CR23
  doi: 10.5244/C.16.36
– volume-title: 2007 IEEE aerospace conference
  year: 2007
  ident: 9193_CR6
  contributor:
    fullname: C. A. Brooks
– volume-title: Robotics: science and systems
  year: 2008
  ident: 9193_CR21
  contributor:
    fullname: M. Luber
– start-page: 978
  volume-title: ICPR ’06: Proceedings of the 18th international conference on pattern recognition
  year: 2006
  ident: 9193_CR34
  contributor:
    fullname: M. Tsuchiya
– volume-title: International conference on computer vision and pattern recognition
  year: 2005
  ident: 9193_CR29
  contributor:
    fullname: T. Serre
– volume: 34
  start-page: 2071
  issue: 11
  year: 2001
  ident: 9193_CR22
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(00)00146-1
  contributor:
    fullname: J. Luo
– ident: 9193_CR36
  doi: 10.1109/CVPR.2000.854754
– volume-title: Proceedings of the fifteenth conference on uncertainty in artificial intelligence
  year: 1999
  ident: 9193_CR2
  contributor:
    fullname: H. Attias
– volume-title: ICML ’06: Proceedings of the 23rd international conference on machine learning
  year: 2006
  ident: 9193_CR8
  contributor:
    fullname: R. Caruana
– volume-title: The EM algorithm and extensions
  year: 1997
  ident: 9193_CR24
  contributor:
    fullname: G. McLachlan
– volume: 28
  start-page: 337
  issue: 2
  year: 2000
  ident: 9193_CR17
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1016218223
  contributor:
    fullname: J. H. Friedman
– volume-title: Robotics: science and systems
  year: 2006
  ident: 9193_CR28
  contributor:
    fullname: D. Schultz
– ident: 9193_CR38
– ident: 9193_CR15
– volume: 8
  start-page: 679
  issue: 6
  year: 1986
  ident: 9193_CR7
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1986.4767851
  contributor:
    fullname: J. F. Canny
– volume-title: Pattern recognition and machine learning
  year: 2006
  ident: 9193_CR4
  contributor:
    fullname: C. M. Bishop
– volume: 14
  start-page: 239
  issue: 2
  year: 1992
  ident: 9193_CR3
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.121791
  contributor:
    fullname: P. Besl
– ident: 9193_CR25
  doi: 10.1109/ROBOT.1985.1087316
– ident: 9193_CR9
– volume: 5
  start-page: 975
  year: 2003
  ident: 9193_CR37
  publication-title: Journal of Machine Learning Research
  contributor:
    fullname: T. Wu
– volume-title: Pattern classification
  year: 2001
  ident: 9193_CR14
  contributor:
    fullname: R. Duda
– volume: 14
  start-page: 382
  issue: 4
  year: 1999
  ident: 9193_CR18
  publication-title: Statistical Science
  doi: 10.1214/ss/1009212519
  contributor:
    fullname: J. Hoeting
– volume: 57
  start-page: 2
  year: 2004
  ident: 9193_CR35
  publication-title: International Journal of Computer Vision
  doi: 10.1023/B:VISI.0000013087.49260.fb
  contributor:
    fullname: P. Viola
– ident: 9193_CR26
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 9193_CR13
  publication-title: Journal of the Royal Statistical Society
  contributor:
    fullname: A. Dempster
– ident: 9193_CR19
  doi: 10.1109/IROS.2008.4650636
– volume-title: Robotics: science and systems
  year: 2006
  ident: 9193_CR11
  contributor:
    fullname: H. Dahlkamp
– ident: 9193_CR16
  doi: 10.1109/IROS.2003.1249281
– start-page: 267
  volume-title: Readings in speech recognition
  year: 1990
  ident: 9193_CR27
  doi: 10.1016/B978-0-08-051584-7.50027-9
  contributor:
    fullname: L. R. Rabiner
– ident: 9193_CR33
  doi: 10.1109/ICCV.2003.1238354
SSID ssj0009700
Score 1.9830981
Snippet This work introduces a self-supervised architecture for robust classification of moving obstacles in urban environments. Our approach presents a hierarchical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 219
SubjectTerms Architecture
Artificial Intelligence
Autonomous
Classification
Computer Imaging
Control
Engineering
Labels
Mechatronics
Moving obstacles
Obstacles
Pattern Recognition and Graphics
Retraining
Robotics
Robotics and Automation
Robots
Segmentation
Sensors
Trains
Urban environments
Vision
Title Track-based self-supervised classification of dynamic obstacles
URI https://link.springer.com/article/10.1007/s10514-010-9193-0
https://www.proquest.com/docview/872145553
https://search.proquest.com/docview/907933008
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ5oe9GDb2OtGg6eNGugPJY9mca2aYzxoibticA-LjXQSPn_zvAo1ehBL5ANm4UMs_t9w8x-AFwjhkhHcMOkcA1DD_FZHAQ-czRyZeGLgJcirtMX_jwLR2OSyRmsP12ki7smI1ku1Bt73RDbGeVuhUM1Z9vQRejx0be7w_Hj9KmV2q03niDwM-TLbpPL_GmQr2jUUsxvWdESbCb7_3nMA9irqaU1rHzhELZ0egS7G4KDx3CP0CQXjKBLWbl-NywvlrRaUFsSkabKofJlWZmxVPW7eitLkENS-dwJvE3Grw9TVv9CgUnX4yumDM5R5WtuQgy0uDJ4CBS-AmHsOOZ2aDCeoVytpx0ZOEZwjI886WhscI3U4RQ6aZbqM7BULDH40wOugtCTCU-Eb5sE40Mqk-We3YObxpTRslLKiFpNZLJKhFaJyCoRdu43xo7qSZNHIS9l0323B9b6Kno7pTDiVGdFHgnS83ORt_TgtrF_O8Cvtzv_U-8-7FQ1AlTmdwGd1UehL2E7V8VV7Wt0ns3no09bAMwu
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RdgAG3ohSHhmYQJYa8nA8oQpaWlG6UCQ2K_FjAaUVaf8_d3mQgmCAJZIVy4nOZ3_f6c6fAS4QQ5QruGVKeJahhwQsDsOAuQa5sghEyHMR1-ETn7xEd32SyfGqszB5tXuVksx36pXDbgjujJK3wqWiswa0fBH66Mqt3mh6P6i1dsuTJ4j8DAmzVyUzfxrkKxzVHPNbWjRHm8H2v_5zB7ZKcun0Cm_YhTWT7sHmiuTgPtwgOKlXRuClncy8WZYt57RfUFsRlabaoXy6nJl1dHFhvTNLkEVSAd0BPA_609shKy9RYMrz-YJpi6tUB4bbCEMtri0-Qo2TIGw3jnk3shjRULbWN64KXSs4Rki-cg02uEHycAjNdJaaI3B0rDD8M9dch5GvEp6IoGsTjBCpUJb73TZcVraU80IrQ9aqyGQViVaRZBWJnTuVtWW5bDIZ8Vw4PfDa4Hy-RX-nJEacmtkyk4IU_TxkLm24quxfD_Dr547_1Psc1ofTx7EcjyYPHdgoKgao6O8Emov3pTmFRqaXZ6XjfQBFQs5s
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sC6IH32Ktjxw8KUsb89jsqRTbUrUUQQVvS7qPi5IU0_5_Z_KwVfQgXgIhyybMzma-Yb75FuACY4hyBbdMCc8y9JCAxWEYMNcgVhaBCHku4jp65JOXqD8gmZxu1QuTs92rkmTR00AqTcm8PdO2vdL4hoGeUSFXuERAq0HDx0QGHb3RG9yNxkvd3bILBVEAQ_DsVYXNnyb5GpqWePNbiTSPPMPtf3_zDmyVoNPpFV6yC2sm2YPNFSnCfehi0FKvjIKadjLzZlm2mNF_hO4VQWziFOXL6KTW0cVB9k46RXRJxLoDeB4Onm5GrDxcgSnP53OmLe5eHRhuI0zBuLZ4CTUujrCdOOadyGKmQ1Vc37gqdK3gmDn5yjV4ww2CikOoJ2lijsDRscK00FxzHUa-mvKpCDp2ipkjEWi532nCZWVXOSs0NORSLZmsItEqkqwicXCrsrwst1MmI54LqgdeE5zPp7gPqLgRJyZdZFKQ0p-HiKYJV9VaLCf49XXHfxp9DusP_aEc307uW7BREAmIC3gC9fn7wpxCLdOLs9IHPwDCB9cv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Track-based+self-supervised+classification+of+dynamic+obstacles&rft.jtitle=Autonomous+robots&rft.au=Katz%2C+Roman&rft.au=Nieto%2C+Juan&rft.au=Nebot%2C+Eduardo&rft.au=Douillard%2C+Bertrand&rft.date=2010-08-01&rft.pub=Springer+US&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=29&rft.issue=2&rft.spage=219&rft.epage=233&rft_id=info:doi/10.1007%2Fs10514-010-9193-0&rft.externalDocID=10_1007_s10514_010_9193_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon