Identifying a stochastic clock network with light entrainment for single cells of Neurospora crassa

Stochastic networks for the clock were identified by ensemble methods using genetic algorithms that captured the amplitude and period variation in single cell oscillators of Neurospora crassa. The genetic algorithms were at least an order of magnitude faster than ensemble methods using parallel temp...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 10; no. 1; p. 15168
Main Authors: Caranica, C, Al-Omari, A, Schüttler, H-B, Arnold, J
Format: Journal Article
Language:English
Published: England 16-09-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stochastic networks for the clock were identified by ensemble methods using genetic algorithms that captured the amplitude and period variation in single cell oscillators of Neurospora crassa. The genetic algorithms were at least an order of magnitude faster than ensemble methods using parallel tempering and appeared to provide a globally optimum solution from a random start in the initial guess of model parameters (i.e., rate constants and initial counts of molecules in a cell). The resulting goodness of fit [Formula: see text] was roughly halved versus solutions produced by ensemble methods using parallel tempering, and the resulting [Formula: see text] per data point was only [Formula: see text] = 2,708.05/953 = 2.84. The fitted model ensemble was robust to variation in proxies for "cell size". The fitted neutral models without cellular communication between single cells isolated by microfluidics provided evidence for only one Stochastic Resonance at one common level of stochastic intracellular noise across days from 6 to 36 h of light/dark (L/D) or in a D/D experiment. When the light-driven phase synchronization was strong as measured by the Kuramoto (K), there was degradation in the single cell oscillations away from the stochastic resonance. The rate constants for the stochastic clock network are consistent with those determined on a macroscopic scale of 10 cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-72213-1