Phenotype-Specific Treatment of Heart Failure With Preserved Ejection Fraction: A Multiorgan Roadmap

Heart failure (HF) with preserved ejection fraction (EF; HFpEF) accounts for 50% of HF cases, and its prevalence relative to HF with reduced EF continues to rise. In contrast to HF with reduced EF, large trials testing neurohumoral inhibition in HFpEF failed to reach a positive outcome. This failure...

Full description

Saved in:
Bibliographic Details
Published in:Circulation (New York, N.Y.) Vol. 134; no. 1; pp. 73 - 90
Main Authors: Shah, Sanjiv J, Kitzman, Dalane W, Borlaug, Barry A, van Heerebeek, Loek, Zile, Michael R, Kass, David A, Paulus, Walter J
Format: Journal Article
Language:English
Published: United States by the American College of Cardiology Foundation and the American Heart Association, Inc 05-07-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heart failure (HF) with preserved ejection fraction (EF; HFpEF) accounts for 50% of HF cases, and its prevalence relative to HF with reduced EF continues to rise. In contrast to HF with reduced EF, large trials testing neurohumoral inhibition in HFpEF failed to reach a positive outcome. This failure was recently attributed to distinct systemic and myocardial signaling in HFpEF and to diversity of HFpEF phenotypes. In this review, an HFpEF treatment strategy is proposed that addresses HFpEF-specific signaling and phenotypic diversity. In HFpEF, extracardiac comorbidities such as metabolic risk, arterial hypertension, and renal insufficiency drive left ventricular remodeling and dysfunction through systemic inflammation and coronary microvascular endothelial dysfunction. The latter affects left ventricular diastolic dysfunction through macrophage infiltration, resulting in interstitial fibrosis, and through altered paracrine signaling to cardiomyocytes, which become hypertrophied and stiff because of low nitric oxide and cyclic guanosine monophosphate. Systemic inflammation also affects other organs such as lungs, skeletal muscle, and kidneys, leading, respectively, to pulmonary hypertension, muscle weakness, and sodium retention. Individual steps of these signaling cascades can be targeted by specific interventionsmetabolic risk by caloric restriction, systemic inflammation by statins, pulmonary hypertension by phosphodiesterase 5 inhibitors, muscle weakness by exercise training, sodium retention by diuretics and monitoring devices, myocardial nitric oxide bioavailability by inorganic nitrate-nitrite, myocardial cyclic guanosine monophosphate content by neprilysin or phosphodiesterase 9 inhibition, and myocardial fibrosis by spironolactone. Because of phenotypic diversity in HFpEF, personalized therapeutic strategies are proposed, which are configured in a matrix with HFpEF presentations in the abscissa and HFpEF predispositions in the ordinate.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0009-7322
1524-4539
DOI:10.1161/CIRCULATIONAHA.116.021884