REDUCED-ORDER MODELS OF UNSTEADY TRANSONIC VISCOUS FLOWS IN TURBOMACHINERY
The proper orthogonal decomposition (POD) technique is applied in the frequency domain to obtain a reduced-order model of the unsteady flow in a transonic turbomachinery cascade of oscillating blades. The flow is described by a inviscid—viscous model, i.e. a full potential equation outer flow model...
Saved in:
Published in: | Journal of fluids and structures Vol. 14; no. 8; pp. 1215 - 1234 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Elsevier Ltd
01-11-2000
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The proper orthogonal decomposition (POD) technique is applied in the frequency domain to obtain a reduced-order model of the unsteady flow in a transonic turbomachinery cascade of oscillating blades. The flow is described by a inviscid—viscous model, i.e. a full potential equation outer flow model and an integral equation boundary layer model. The nonlinear transonic steady flow is computed first and then the unsteady flow is determined by a small perturbation linearization about the nonlinear steady solution. Solutions are determined for a full range of frequencies and validated. The full model results and the POD method are used to construct a reduced-order model in the frequency domain. A cascade of airfoils forming the Tenth Standard Configuration is investigated to show that the reduced-order model with only 15–75 degrees of freedom accurately predicts the unsteady response of the full system with approximately 15 000 degrees of freedom. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0889-9746 1095-8622 |
DOI: | 10.1006/jfls.2000.0320 |