Red rice starch modification - Combination of the non-thermal method with a pulsed electric field (PEF) and enzymatic method using α-amylase
The objective of this study was to investigate the dual modification of red rice starch using pulsed electric field (PEF) and α-amylase, focusing on morpho-structural, thermal, and viscoamylographic properties. Native starch (Control) underwent various treatments: PEF at 30 kV cm−1 (PEF30), α-amylas...
Saved in:
Published in: | International journal of biological macromolecules Vol. 253; p. 127030 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
31-12-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of this study was to investigate the dual modification of red rice starch using pulsed electric field (PEF) and α-amylase, focusing on morpho-structural, thermal, and viscoamylographic properties. Native starch (Control) underwent various treatments: PEF at 30 kV cm−1 (PEF30), α-amylase at 9.0 U mg−1 (AA0), and a combination of both (PEF30 + α and α + PEF30). The PEF30 + α treatment exhibited the highest degree of digestion (10.66 %) and resulted in morphological changes in the starch granules, which became elongated and curved, with an increased average diameter of 50.49 μm compared to the control. The starch was classified as type A, with a maximum reduction in crystallinity of up to 21.17 % for PEF30. The deconvolution of FT-IR bands indicated an increase in the double helix degree (DDH) for PEF30 and AA0, while the degree of order (DO) was reduced for PEF30, AA0, and PEF30 + α. DSC analysis revealed significant modifications in gelatinization temperatures, particularly for PEF30, and these changes were supported by a reduction in gelatinization enthalpy (ΔH) of up to 28.05 % for AA0. These findings indicate that both individual and combined treatments promote a decrease in starch gelatinization and facilitate the process, requiring less energy. Differences were observed between the formulations subjected to single and alternating dual treatments, highlighting the influence of the order of PEF application on the structural characteristics of starch, especially when applied before the enzymatic treatment (PEF + α). Regarding the viscoamylographic parameters, it was observed that AA0 presented higher values than the control, indicating that α-amylase enhances the firmness of the paste. The double modification with PEF + α was more effective in reducing syneresis and starch retrogradation, leading to improvements in paste properties. This study provided significant insights into the modification of red rice starch using an efficient and environmentally friendly approach.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.127030 |