Red rice starch modification - Combination of the non-thermal method with a pulsed electric field (PEF) and enzymatic method using α-amylase

The objective of this study was to investigate the dual modification of red rice starch using pulsed electric field (PEF) and α-amylase, focusing on morpho-structural, thermal, and viscoamylographic properties. Native starch (Control) underwent various treatments: PEF at 30 kV cm−1 (PEF30), α-amylas...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules Vol. 253; p. 127030
Main Authors: Almeida, Raphael Lucas Jacinto, Santos, Newton Carlos, Muniz, Cecilia Elisa Sousa, da Silva Eduardo, Raphael, de Almeida Silva, Rebeca, Ribeiro, Celene Ataíde Cordeiro, da Costa, Gilsandro Alves, de Figueiredo, Maria José, Galdino, Pablícia Oliveira, dos Santos, Everaldo Silvino
Format: Journal Article
Language:English
Published: Elsevier B.V 31-12-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to investigate the dual modification of red rice starch using pulsed electric field (PEF) and α-amylase, focusing on morpho-structural, thermal, and viscoamylographic properties. Native starch (Control) underwent various treatments: PEF at 30 kV cm−1 (PEF30), α-amylase at 9.0 U mg−1 (AA0), and a combination of both (PEF30 + α and α + PEF30). The PEF30 + α treatment exhibited the highest degree of digestion (10.66 %) and resulted in morphological changes in the starch granules, which became elongated and curved, with an increased average diameter of 50.49 μm compared to the control. The starch was classified as type A, with a maximum reduction in crystallinity of up to 21.17 % for PEF30. The deconvolution of FT-IR bands indicated an increase in the double helix degree (DDH) for PEF30 and AA0, while the degree of order (DO) was reduced for PEF30, AA0, and PEF30 + α. DSC analysis revealed significant modifications in gelatinization temperatures, particularly for PEF30, and these changes were supported by a reduction in gelatinization enthalpy (ΔH) of up to 28.05 % for AA0. These findings indicate that both individual and combined treatments promote a decrease in starch gelatinization and facilitate the process, requiring less energy. Differences were observed between the formulations subjected to single and alternating dual treatments, highlighting the influence of the order of PEF application on the structural characteristics of starch, especially when applied before the enzymatic treatment (PEF + α). Regarding the viscoamylographic parameters, it was observed that AA0 presented higher values than the control, indicating that α-amylase enhances the firmness of the paste. The double modification with PEF + α was more effective in reducing syneresis and starch retrogradation, leading to improvements in paste properties. This study provided significant insights into the modification of red rice starch using an efficient and environmentally friendly approach. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.127030