Long‐Term Intracellular Tracking of Label‐Free Nanoparticles in Live Cells and Tissues with Confocal Microscopy

The label‐free imaging of inorganic nanoparticles (NPs) using confocal laser scanning microscopy (CLSM) provides a powerful and versatile tool for studying interactions between NPs and biological systems. Without the need for exogenous labels or markers, it simply benefits from the differential scat...

Full description

Saved in:
Bibliographic Details
Published in:Small methods Vol. 8; no. 10; pp. e2301713 - n/a
Main Authors: Gusta, Muriel F., Ernst, Lena M., Moriones, Oscar H., Piella, Jordi, Valeri, Marta, Bastus, Neus G., Puntes, Victor
Format: Journal Article
Language:English
Published: Germany 01-10-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The label‐free imaging of inorganic nanoparticles (NPs) using confocal laser scanning microscopy (CLSM) provides a powerful and versatile tool for studying interactions between NPs and biological systems. Without the need for exogenous labels or markers, it simply benefits from the differential scattering of visible photons between biomaterials and inorganic NPs. Validation experiments conducted on fixed and living cells in real‐time, as well as mouse tissue sections following parenteral administration of NPs. Additionally, by incorporating reporter fluorophores and utilizing both reflectance and fluorescence imaging modalities, the method enables high‐resolution multiplex imaging of cellular structures and NPs. Different sizes and concentrations of Au NPs are tested as for Ag, Fe3O4, and CeO2 NPs, all with biological interest. Overall, the comprehensive study of NP imaging by confocal microscopy in reflectance mode provides valuable insights and tools for researchers interested in monitoring the nano‐bio interactions. Label‐free imaging of inorganic nanoparticles through confocal laser scanning microscopy offers a versatile approach to studying nano‐bio interactions. This method, based on photon scattering, eliminates the need for labels. Validation experiments on cells and tissue section post‐NP administration demonstrate real‐time applications. Using reporter fluorophores and both reflectance and fluorescence imaging, the method achieves high‐resolution multiplex imaging of cellular structures and NPs.
AbstractList The label‐free imaging of inorganic nanoparticles (NPs) using confocal laser scanning microscopy (CLSM) provides a powerful and versatile tool for studying interactions between NPs and biological systems. Without the need for exogenous labels or markers, it simply benefits from the differential scattering of visible photons between biomaterials and inorganic NPs. Validation experiments conducted on fixed and living cells in real‐time, as well as mouse tissue sections following parenteral administration of NPs. Additionally, by incorporating reporter fluorophores and utilizing both reflectance and fluorescence imaging modalities, the method enables high‐resolution multiplex imaging of cellular structures and NPs. Different sizes and concentrations of Au NPs are tested as for Ag, Fe3O4, and CeO2 NPs, all with biological interest. Overall, the comprehensive study of NP imaging by confocal microscopy in reflectance mode provides valuable insights and tools for researchers interested in monitoring the nano‐bio interactions. Label‐free imaging of inorganic nanoparticles through confocal laser scanning microscopy offers a versatile approach to studying nano‐bio interactions. This method, based on photon scattering, eliminates the need for labels. Validation experiments on cells and tissue section post‐NP administration demonstrate real‐time applications. Using reporter fluorophores and both reflectance and fluorescence imaging, the method achieves high‐resolution multiplex imaging of cellular structures and NPs.
The label-free imaging of inorganic nanoparticles (NPs) using confocal laser scanning microscopy (CLSM) provides a powerful and versatile tool for studying interactions between NPs and biological systems. Without the need for exogenous labels or markers, it simply benefits from the differential scattering of visible photons between biomaterials and inorganic NPs. Validation experiments conducted on fixed and living cells in real-time, as well as mouse tissue sections following parenteral administration of NPs. Additionally, by incorporating reporter fluorophores and utilizing both reflectance and fluorescence imaging modalities, the method enables high-resolution multiplex imaging of cellular structures and NPs. Different sizes and concentrations of Au NPs are tested as for Ag, Fe3O4, and CeO2 NPs, all with biological interest. Overall, the comprehensive study of NP imaging by confocal microscopy in reflectance mode provides valuable insights and tools for researchers interested in monitoring the nano-bio interactions.The label-free imaging of inorganic nanoparticles (NPs) using confocal laser scanning microscopy (CLSM) provides a powerful and versatile tool for studying interactions between NPs and biological systems. Without the need for exogenous labels or markers, it simply benefits from the differential scattering of visible photons between biomaterials and inorganic NPs. Validation experiments conducted on fixed and living cells in real-time, as well as mouse tissue sections following parenteral administration of NPs. Additionally, by incorporating reporter fluorophores and utilizing both reflectance and fluorescence imaging modalities, the method enables high-resolution multiplex imaging of cellular structures and NPs. Different sizes and concentrations of Au NPs are tested as for Ag, Fe3O4, and CeO2 NPs, all with biological interest. Overall, the comprehensive study of NP imaging by confocal microscopy in reflectance mode provides valuable insights and tools for researchers interested in monitoring the nano-bio interactions.
The label-free imaging of inorganic nanoparticles (NPs) using confocal laser scanning microscopy (CLSM) provides a powerful and versatile tool for studying interactions between NPs and biological systems. Without the need for exogenous labels or markers, it simply benefits from the differential scattering of visible photons between biomaterials and inorganic NPs. Validation experiments conducted on fixed and living cells in real-time, as well as mouse tissue sections following parenteral administration of NPs. Additionally, by incorporating reporter fluorophores and utilizing both reflectance and fluorescence imaging modalities, the method enables high-resolution multiplex imaging of cellular structures and NPs. Different sizes and concentrations of Au NPs are tested as for Ag, Fe O , and CeO NPs, all with biological interest. Overall, the comprehensive study of NP imaging by confocal microscopy in reflectance mode provides valuable insights and tools for researchers interested in monitoring the nano-bio interactions.
The label‐free imaging of inorganic nanoparticles (NPs) using confocal laser scanning microscopy (CLSM) provides a powerful and versatile tool for studying interactions between NPs and biological systems. Without the need for exogenous labels or markers, it simply benefits from the differential scattering of visible photons between biomaterials and inorganic NPs. Validation experiments conducted on fixed and living cells in real‐time, as well as mouse tissue sections following parenteral administration of NPs. Additionally, by incorporating reporter fluorophores and utilizing both reflectance and fluorescence imaging modalities, the method enables high‐resolution multiplex imaging of cellular structures and NPs. Different sizes and concentrations of Au NPs are tested as for Ag, Fe 3 O 4 , and CeO 2 NPs, all with biological interest. Overall, the comprehensive study of NP imaging by confocal microscopy in reflectance mode provides valuable insights and tools for researchers interested in monitoring the nano‐bio interactions.
Author Gusta, Muriel F.
Ernst, Lena M.
Piella, Jordi
Puntes, Victor
Bastus, Neus G.
Moriones, Oscar H.
Valeri, Marta
Author_xml – sequence: 1
  givenname: Muriel F.
  surname: Gusta
  fullname: Gusta, Muriel F.
  organization: Biomaterials, and Nanomedicine (CIBER‐BBN)
– sequence: 2
  givenname: Lena M.
  surname: Ernst
  fullname: Ernst, Lena M.
  organization: Vall d'Hebron Institut of Research (VHIR)
– sequence: 3
  givenname: Oscar H.
  surname: Moriones
  fullname: Moriones, Oscar H.
  organization: Campus UAB
– sequence: 4
  givenname: Jordi
  surname: Piella
  fullname: Piella, Jordi
  organization: Campus UAB
– sequence: 5
  givenname: Marta
  surname: Valeri
  fullname: Valeri, Marta
  organization: Vall d'Hebron Institut of Research (VHIR)
– sequence: 6
  givenname: Neus G.
  orcidid: 0000-0002-3144-7986
  surname: Bastus
  fullname: Bastus, Neus G.
  email: neus.bastus@icn2.cat
  organization: Biomaterials, and Nanomedicine (CIBER‐BBN)
– sequence: 7
  givenname: Victor
  surname: Puntes
  fullname: Puntes, Victor
  email: victor.puntes@vhir.org
  organization: Institució Catalana de Recerca i Estudis Avançats (ICREA)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38564783$$D View this record in MEDLINE/PubMed
BookMark eNqFkLFOwzAURS1UREvpyog8srTYceIkIyoUKqUwkD1yHKcYHLvYKVU3PoFv5Etw1FLYmN6T3rlX991T0NNGCwDOMZpghIIr17TVJEABQTjG5AgMAkLpOKUo6f3Z-2Dk3AvyAoRJFOAT0CdJRMM4IQPgMqOXXx-fubANnOvWMi6UWitmYe73V6mX0NQwY6VQHptZIeAD02bFbCu5Eg5KDTP5LuDU6xxkuoK5dG7tLxvZPsOp0bXhTMGF5NY4blbbM3BcM-XEaD-HIJ_d5tP7cfZ4N59eZ2NOwoiMK5HGPE4wCVlKMQrCkiZxiUPKEK_qOuFpQARNS-S7KBHxwcOI0YpVcVjHlJMhuNzZrqx583naopGu-45pYdauIIhgSgNEUo9OdmgX0VlRFysrG2a3BUZFV3XRVV0cqvaCi733umxEdcB_ivVAugM2UontP3bF0yK_-TX_Bl1Uj0g
CitedBy_id crossref_primary_10_1016_j_jallcom_2024_175218
Cites_doi 10.1186/1743-8977-8-2
10.1021/la00048a013
10.1021/nl050074e
10.1002/smll.201907322
10.1021/la300402w
10.1002/smll.202101519
10.1007/s11060-010-0389-0
10.2217/nnm.12.169
10.1002/jbio.201400025
10.1002/cbic.200800843
10.1039/c3nr05211g
10.1016/j.cardiores.2006.11.031
10.1039/b212437h
10.1021/la201938u
10.1021/jp057170o
10.1038/nnano.2012.207
10.1371/journal.pone.0159980
10.1021/acs.chemmater.9b02005
10.1007/s11274-009-0211-3
10.1371/journal.pone.0047562
10.1021/nn800590n
10.1039/C9MH00664H
10.1039/C7CS00169J
10.1016/j.smim.2017.10.001
10.1007/s00330-002-1721-7
10.1088/0022-3727/42/22/224001
10.1021/ar7002804
10.1016/j.ymeth.2017.07.008
10.1515/zpch-2016-0874
10.1002/smll.201703246
10.1039/C7NR00947J
10.1021/acs.langmuir.5b03859
10.2353/ajpath.2007.060929
10.1186/1743-8977-10-56
10.1002/1438-5171(200112)2:4<261::AID-SIMO261>3.0.CO;2-P
10.1039/b107469e
10.1021/cm500316k
10.1021/ja107583h
10.1128/AEM.71.11.7589-7593.2005
10.1016/j.jhep.2015.10.020
10.1038/am.2013.88
10.3390/nano13152208
10.1088/0957-4484/16/10/059
10.1592/phco.30.1.70
10.3390/ma11020243
10.1039/C1CS15280G
10.1039/C5TB01157D
10.1021/nn100816s
10.1103/PhysRevLett.93.037401
10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q
10.1039/b712170a
10.1002/cmmi.376
10.1038/nnano.2011.210
10.1021/jacs.9b05894
10.1021/mp300697h
10.1039/D1NA00719J
10.1039/c0cc05723a
10.1002/smll.201303703
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1002/smtd.202301713
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2366-9608
EndPage n/a
ExternalDocumentID 10_1002_smtd_202301713
38564783
SMTD202301713
Genre article
Journal Article
GrantInformation_xml – fundername: Ministerio de Ciencia, Innovación y Universidades / Agencia Estatal de Investigación MCIN/AEI
  funderid: CONCORD; PCI2019‐103436
– fundername: Severo Ochoa Programme 2023‐2026
  funderid: 10.13039/501100011033
– fundername: Ministerio de Ciencia, Innovación y Universidades (MCIU)
  funderid: RTI2018‐099965‐B‐I00; AEI/FEDER,UE
– fundername: Agència de Gestió d'Ajuts Universitaris i de Recerca
  funderid: 2021‐SGR‐00878
– fundername: Ministerio de Ciencia, Innovación y Universidades / Agencia Estatal de Investigación MCIN/AEI
  grantid: CONCORD
– fundername: Agència de Gestió d'Ajuts Universitaris i de Recerca
  grantid: 2021-SGR-00878
– fundername: Ministerio de Ciencia, Innovación y Universidades / Agencia Estatal de Investigación MCIN/AEI
  grantid: PCI2019-103436
– fundername: Ministerio de Ciencia, Innovación y Universidades (MCIU)
  grantid: AEI/FEDER,UE
– fundername: Ministerio de Ciencia, Innovación y Universidades (MCIU)
  grantid: RTI2018-099965-B-I00
– fundername: Severo Ochoa Programme 2023-2026
  grantid: 10.13039/501100011033
GroupedDBID 0R~
1OC
33P
AAHHS
AAIHA
AANLZ
AAZKR
ACCFJ
ACCZN
ACGFS
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AITYG
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
BFHJK
BMXJE
DCZOG
EBS
HGLYW
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WOHZO
WXSBR
ZZTAW
AEUQT
ARCSS
CGR
CUY
CVF
ECM
EIF
EJD
NPM
AAMNL
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c3453-de97c78134a961024b687b146a0cdff8c923e69b0100b03ace45a6dad74f76c3
IEDL.DBID 33P
ISSN 2366-9608
IngestDate Thu Oct 17 16:36:03 EDT 2024
Thu Nov 21 21:52:12 EST 2024
Sat Nov 02 12:28:41 EDT 2024
Thu Oct 17 09:52:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords optical scattering
label‐free nanoparticle imaging
confocal laser scanning microscopy (CLSM)
live cells and tissues
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3453-de97c78134a961024b687b146a0cdff8c923e69b0100b03ace45a6dad74f76c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3144-7986
PMID 38564783
PQID 3031662039
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_3031662039
crossref_primary_10_1002_smtd_202301713
pubmed_primary_38564783
wiley_primary_10_1002_smtd_202301713_SMTD202301713
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Small methods
PublicationTitleAlternate Small Methods
PublicationYear 2024
References 2009; 42
2002; 12
2017; 46
2003; 13
2016; 32
2008; 37
2020; 16
2014; 26
2003; 17
2007; 73
2017; 231
2008; 2
2017; 9
1992; 8
2010; 26
2009; 10
2003; 128
2013; 10
2007; 170
2018; 136
2000; 53
2017; 34
2012; 28
2005; 71
2011; 27
2010; 5
2014; 6
2010; 4
2010; 30
2014; 10
2023; 13
2019; 6
2023; 11
2015; 3
2019; 31
2008
2006; 110
2019; 141
2015; 8
2011; 8
2011; 133
2016; 11
2011; 103
2004; 93
2022; 4
2021; 17
2005; 5
2016; 64
2016
2001; 2
2008; 41
2011; 47
2012; 7
2018; 11
2005; 16
2012; 41
2018; 14
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Englebienne P. (e_1_2_8_1_1) 2003; 17
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Palau M. (e_1_2_8_41_1) 2023; 11
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1917
  year: 2012
  publication-title: Nanomedicine
– volume: 7
  year: 2012
  publication-title: PLoS One
– volume: 6
  year: 2014
  publication-title: NPG Asia Mater.
– volume: 32
  start-page: 290
  year: 2016
  publication-title: Langmuir
– volume: 93
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 243
  year: 2018
  publication-title: Materials
– volume: 14
  year: 2018
  publication-title: Small
– volume: 12
  start-page: 522
  year: 2002
  publication-title: J. Mater. Chem.
– volume: 10
  start-page: 56
  year: 2013
  publication-title: Part. Fibre Toxicol.
– volume: 8
  start-page: 401
  year: 2015
  publication-title: J. Biophotonics
– volume: 11
  year: 2016
  publication-title: PLoS One
– volume: 7
  start-page: 56
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 41
  start-page: 1578
  year: 2008
  publication-title: Acc. Chem. Res.
– volume: 47
  start-page: 4099
  year: 2011
  publication-title: Chem. Commun.
– volume: 6
  start-page: 2307
  year: 2014
  publication-title: Nanoscale
– volume: 4
  start-page: 2098
  year: 2022
  publication-title: Nanoscale Adv.
– volume: 3
  start-page: 6293
  year: 2015
  publication-title: J. Mater. Chem. B
– volume: 16
  year: 2020
  publication-title: Small
– volume: 71
  start-page: 7589
  year: 2005
  publication-title: Appl. Environ. Microbiol.
– year: 2008
– volume: 46
  start-page: 3962
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 53
  start-page: 621
  year: 2000
  publication-title: J. Biomed. Mater. Res.
– volume: 7
  start-page: 779
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 231
  year: 2010
  publication-title: Contrast Media Mol. Imaging
– volume: 13
  start-page: 2208
  year: 2023
  publication-title: Nanomaterials
– volume: 16
  start-page: 2346
  year: 2005
  publication-title: Nanotechnology
– volume: 11
  year: 2023
  publication-title: Microbiol. Spectrum
– volume: 26
  start-page: 2836
  year: 2014
  publication-title: Chem. Mater.
– volume: 73
  start-page: 549
  year: 2007
  publication-title: Cardiovasc. Res.
– volume: 133
  start-page: 2525
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 27
  year: 2011
  publication-title: Langmuir
– volume: 5
  start-page: 829
  year: 2005
  publication-title: Nano Lett.
– volume: 28
  start-page: 9113
  year: 2012
  publication-title: Langmuir
– volume: 2
  start-page: 2415
  year: 2008
  publication-title: ACS Nano
– volume: 34
  start-page: 52
  year: 2017
  publication-title: Semin. Immunol.
– volume: 10
  start-page: 2801
  year: 2014
  publication-title: Small
– volume: 42
  year: 2009
  publication-title: J. Phys. D: Appl. Phys.
– volume: 37
  start-page: 1896
  year: 2008
  publication-title: Chem. Soc. Rev.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 128
  start-page: 686
  year: 2003
  publication-title: Analyst
– year: 2016
– volume: 26
  start-page: 615
  year: 2010
  publication-title: World J. Microbiol. Biotechnol.
– volume: 9
  start-page: 6111
  year: 2017
  publication-title: Nanoscale
– volume: 13
  start-page: 1266
  year: 2003
  publication-title: Eur. Radiol.
– volume: 103
  start-page: 317
  year: 2011
  publication-title: J. Neurooncol.
– volume: 64
  start-page: 691
  year: 2016
  publication-title: J. Hepatol.
– volume: 30
  start-page: 70
  year: 2010
  publication-title: Pharmacotherapy
– volume: 2
  start-page: 261
  year: 2001
  publication-title: Single Mol.
– volume: 8
  start-page: 2
  year: 2011
  publication-title: Part. Fibre Toxicol.
– volume: 170
  start-page: 793
  year: 2007
  publication-title: Am. J. Pathol.
– volume: 31
  start-page: 7922
  year: 2019
  publication-title: Chem. Mater.
– volume: 17
  year: 2003
  publication-title: Spectroscopy
– volume: 231
  start-page: 33
  year: 2017
  publication-title: Z. Phys. Chem.
– volume: 8
  start-page: 2921
  year: 1992
  publication-title: Langmuir
– volume: 6
  start-page: 1538
  year: 2019
  publication-title: Mater. Horiz.
– volume: 110
  start-page: 7238
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 10
  start-page: 1025
  year: 2009
  publication-title: ChemBioChem
– volume: 10
  start-page: 2093
  year: 2013
  publication-title: Mol. Pharmaceutics
– volume: 136
  start-page: 160
  year: 2018
  publication-title: Methods
– volume: 41
  start-page: 2849
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 5321
  year: 2010
  publication-title: ACS Nano
– ident: e_1_2_8_34_1
  doi: 10.1186/1743-8977-8-2
– volume: 17
  year: 2003
  ident: e_1_2_8_1_1
  publication-title: Spectroscopy
  contributor:
    fullname: Englebienne P.
– ident: e_1_2_8_59_1
  doi: 10.1021/la00048a013
– ident: e_1_2_8_32_1
  doi: 10.1021/nl050074e
– ident: e_1_2_8_51_1
  doi: 10.1002/smll.201907322
– ident: e_1_2_8_13_1
  doi: 10.1021/la300402w
– ident: e_1_2_8_20_1
  doi: 10.1002/smll.202101519
– ident: e_1_2_8_45_1
  doi: 10.1007/s11060-010-0389-0
– ident: e_1_2_8_10_1
  doi: 10.2217/nnm.12.169
– ident: e_1_2_8_27_1
  doi: 10.1002/jbio.201400025
– ident: e_1_2_8_28_1
  doi: 10.1002/cbic.200800843
– ident: e_1_2_8_53_1
  doi: 10.1039/c3nr05211g
– ident: e_1_2_8_47_1
  doi: 10.1016/j.cardiores.2006.11.031
– ident: e_1_2_8_30_1
  doi: 10.1039/b212437h
– ident: e_1_2_8_52_1
  doi: 10.1021/la201938u
– ident: e_1_2_8_5_1
  doi: 10.1021/jp057170o
– ident: e_1_2_8_12_1
  doi: 10.1038/nnano.2012.207
– ident: e_1_2_8_36_1
  doi: 10.1371/journal.pone.0159980
– ident: e_1_2_8_58_1
  doi: 10.1021/acs.chemmater.9b02005
– ident: e_1_2_8_42_1
  doi: 10.1007/s11274-009-0211-3
– ident: e_1_2_8_38_1
  doi: 10.1371/journal.pone.0047562
– volume: 11
  year: 2023
  ident: e_1_2_8_41_1
  publication-title: Microbiol. Spectrum
  contributor:
    fullname: Palau M.
– ident: e_1_2_8_17_1
  doi: 10.1021/nn800590n
– ident: e_1_2_8_21_1
  doi: 10.1039/C9MH00664H
– ident: e_1_2_8_54_1
  doi: 10.1039/C7CS00169J
– ident: e_1_2_8_55_1
  doi: 10.1016/j.smim.2017.10.001
– ident: e_1_2_8_6_1
  doi: 10.1007/s00330-002-1721-7
– ident: e_1_2_8_8_1
  doi: 10.1088/0022-3727/42/22/224001
– ident: e_1_2_8_3_1
  doi: 10.1021/ar7002804
– ident: e_1_2_8_26_1
  doi: 10.1016/j.ymeth.2017.07.008
– ident: e_1_2_8_31_1
  doi: 10.1515/zpch-2016-0874
– ident: e_1_2_8_25_1
  doi: 10.1002/smll.201703246
– ident: e_1_2_8_37_1
  doi: 10.1039/C7NR00947J
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.langmuir.5b03859
– ident: e_1_2_8_61_1
– ident: e_1_2_8_9_1
  doi: 10.2353/ajpath.2007.060929
– ident: e_1_2_8_14_1
  doi: 10.1186/1743-8977-10-56
– ident: e_1_2_8_18_1
  doi: 10.1002/1438-5171(200112)2:4<261::AID-SIMO261>3.0.CO;2-P
– ident: e_1_2_8_62_1
  doi: 10.1039/b107469e
– ident: e_1_2_8_56_1
  doi: 10.1021/cm500316k
– ident: e_1_2_8_11_1
  doi: 10.1021/ja107583h
– ident: e_1_2_8_40_1
  doi: 10.1128/AEM.71.11.7589-7593.2005
– ident: e_1_2_8_50_1
  doi: 10.1016/j.jhep.2015.10.020
– ident: e_1_2_8_7_1
  doi: 10.1038/am.2013.88
– ident: e_1_2_8_49_1
  doi: 10.3390/nano13152208
– ident: e_1_2_8_43_1
  doi: 10.1088/0957-4484/16/10/059
– ident: e_1_2_8_46_1
  doi: 10.1592/phco.30.1.70
– ident: e_1_2_8_33_1
  doi: 10.3390/ma11020243
– ident: e_1_2_8_4_1
  doi: 10.1039/C1CS15280G
– ident: e_1_2_8_23_1
  doi: 10.1039/C5TB01157D
– ident: e_1_2_8_48_1
  doi: 10.1021/nn100816s
– ident: e_1_2_8_35_1
  doi: 10.1103/PhysRevLett.93.037401
– ident: e_1_2_8_44_1
  doi: 10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q
– ident: e_1_2_8_2_1
  doi: 10.1039/b712170a
– ident: e_1_2_8_16_1
  doi: 10.1002/cmmi.376
– ident: e_1_2_8_24_1
  doi: 10.1038/nnano.2011.210
– ident: e_1_2_8_39_1
  doi: 10.1021/jacs.9b05894
– ident: e_1_2_8_15_1
  doi: 10.1021/mp300697h
– ident: e_1_2_8_60_1
– ident: e_1_2_8_19_1
  doi: 10.1039/D1NA00719J
– ident: e_1_2_8_22_1
  doi: 10.1039/c0cc05723a
– ident: e_1_2_8_57_1
  doi: 10.1002/smll.201303703
SSID ssj0002013521
Score 2.3274786
Snippet The label‐free imaging of inorganic nanoparticles (NPs) using confocal laser scanning microscopy (CLSM) provides a powerful and versatile tool for studying...
The label-free imaging of inorganic nanoparticles (NPs) using confocal laser scanning microscopy (CLSM) provides a powerful and versatile tool for studying...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2301713
SubjectTerms Animals
Cerium
confocal laser scanning microscopy (CLSM)
Gold - chemistry
Humans
label‐free nanoparticle imaging
live cells and tissues
Metal Nanoparticles - chemistry
Mice
Microscopy, Confocal - methods
Nanoparticles - chemistry
optical scattering
Title Long‐Term Intracellular Tracking of Label‐Free Nanoparticles in Live Cells and Tissues with Confocal Microscopy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmtd.202301713
https://www.ncbi.nlm.nih.gov/pubmed/38564783
https://www.proquest.com/docview/3031662039
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagEwy8H-UlIyExRTixYzsjaqlAahFSM7BFTuwgJEhR0w5s_AR-I7-Eu6QNVAxIsCVSzol89t13l7vPhJypMA8yq0PPmCj0hGUM7CAznkplpMAhKD_HVPb1UN3e6-4V0uQ0Xfw1P0STcMOdUdlr3OAmLS--SEPL5wkyfQKE9lV1bC2EClUPB79rkizg3QBg-NUBc1J6gNb1nLiRBReLIyw6ph9ocxG8Vt6nt_7_794gazPkSS_rpbJJllyxRVa_8RFuk7I_Kh4-3t5jMNf0BtO-mNfHQlUKPi3DrDod5bRvUvcEj_XGzlEwzxB3z8rr6GNB-2A_aQfkSmoKS-NKsyXFhC_F_kJ0nnSAdYDYEfO6Q-LeVdy59manMngZFyH3rItUprTPhYkAewUilVqlYHANy2ye6wwgo5NRCoEeSxmHDxWhkdZYJXIlM75LWsWocPuEikgb4_AXuM6FD6ICYieIwJSyPjMZb5PzuUaSl5p7I6lZloMEZzFpZrFNTucKS2B74NyYwo2mZQIe2pcyYDxqk71ak81YXIfYaQvSQaWwX16SDAdxt7k7-IvQIVmBa1EXAx6R1mQ8dcdkubTTk2rhfgLbFe2x
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELbKcoAegBYoSym4EhKnaJ3YsZ1jtT_aqtlVpc2BW-TEDkJqE9TsHrj1EfqMfZLOJJuUFQck1GOijBN57Pn5MvOZkK8qLILc6tAzJgo9YRkDO8iMpzIZKXAIyi8Qyp6v1PK7nkyRJues64Vp-SF6wA13RmOvcYMjID16ZA2tr9dI9QkxtK_w3NrnQsJqxC4OftnDLODfIMTwmyPmpPQgXtcddSMLRrtD7Lqmv-LN3fC18T-z10_w5W_Iq23wSc_a1XJA9lx5SPb_oCR8S-q4Kn_c394lYLHpOSK_CO1jrSoFt5YjsE6rgsYmc1fw2OzGOQoWGlLvbYUd_VnSGEwoHYNcTU1padIot6aI-VJsMUT_SRdYCohNMb_fkWQ2TcZzb3swg5dzEXLPukjlSvtcmAjCr0BkUqsMbK5huS0KnUPU6GSUQa7HMsbhQ0VopDVWiULJnL8ng7Iq3QdCRaSNcfgXXBfCB1EB6RMkYUpZn5mcD8m3TiXpr5Z-I22JloMUZzHtZ3FITjuNpbBDcG5M6apNnYKT9qUMGI-G5KhVZT8W1yE224J00GjsHy9JV4tk0l99_B-hL-TFPFnEaXy-vDgmL-G-aGsDP5HB-mbjTsiz2m4-N6v4Aehv8dk
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-QPTg-7E-IwieimmTJulRXJddXEWwB28lbVIRtCvWPXjzJ_gb_SXOtLvVxYOgx5ZOWjLJzDfTmS-EHKkwDzKrQ8-YKPSEZQzsIDOeSmWkwCEoP8dUdvdGXd3q9jnS5DRd_DU_RJNww51R2Wvc4E82P_kiDS0fX5DpEyC0r_DY2lkBWBzZ8zm_brIs4N4AYfjVCXNSegDX9Zi5kQUnk0NMeqYfcHMSvVbup7P0_w9fJosj6ElP67WyQqZcsUoWvhESrpGyPyjuPt7eY7DXtId5X0zsY6UqBaeWYVqdDnLaN6l7gMc6z85RsM8QeI_q6-h9QftgQOkZyJXUFJbGlWpLihlfig2G6D3pJRYCYkvM6zqJO-fxWdcbHcvgZVyE3LMuUpnSPhcmAvAViFRqlYLFNSyzea4zwIxORilEeixlHD5UhEZaY5XIlcz4BpkpBoXbIlRE2hiH_8B1LnwQFRA8QQimlPWZyXiLHI81kjzV5BtJTbMcJDiLSTOLLXI4VlgC-wPnxhRuMCwTcNG-lAHjUYts1ppsxuI6xFZbkA4qhf3ykuTmMm43V9t_ETogc9ftTtLvXV3skHm4LerCwF0y8_I8dHtkurTD_WoNfwL_VfB_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long%E2%80%90Term+Intracellular+Tracking+of+Label%E2%80%90Free+Nanoparticles+in+Live+Cells+and+Tissues+with+Confocal+Microscopy&rft.jtitle=Small+methods&rft.au=Gusta%2C+Muriel+F.&rft.au=Ernst%2C+Lena+M.&rft.au=Moriones%2C+Oscar+H.&rft.au=Piella%2C+Jordi&rft.date=2024-10-01&rft.issn=2366-9608&rft.eissn=2366-9608&rft.volume=8&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmtd.202301713&rft.externalDBID=10.1002%252Fsmtd.202301713&rft.externalDocID=SMTD202301713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-9608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-9608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-9608&client=summon