Investigation of a partial, inductive short-time heat treatment of thin metal sheets integrated into the forming process

Flanging is a widespread method in the sheet metal working industry to connect same or different materials by forming. Especially the sealing technology makes high demands on the flanging process: a low sheet thickness of the inner eyelet is necessary for proper sealing. The outer edges of the neck...

Full description

Saved in:
Bibliographic Details
Published in:MATEC web of conferences Vol. 190; p. 12008
Main Authors: Clausius, Benjamin, Maier, Petra
Format: Journal Article Conference Proceeding
Language:English
Published: Les Ulis EDP Sciences 01-01-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flanging is a widespread method in the sheet metal working industry to connect same or different materials by forming. Especially the sealing technology makes high demands on the flanging process: a low sheet thickness of the inner eyelet is necessary for proper sealing. The outer edges of the neck rings are mostly manufactured by shear cutting. The quality of the cut surface and the level of the local strain hardening influence decisively the limit of the flanging process by possible cracking. This paper is focused on the dependencies of these factors regarding thin metal sheets of different materials with a thickness down to 100 μm. It could be shown that strain hardening has a stronger effect on the process limits compared to the notch effect of the sheet edges when using standard values for the clearance of the shear cutting tool. Furthermore, a process is investigated with a partial inductive short-time heat treatment of the most deformed edge area. Due to the low thickness of the material and low heat capacities related thereto, it is possible to integrate a recrystallization annealing as single step into the forming process. As a result, the strain hardening can be removed from the affected zone directly between two forming steps to increase the process limits.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201819012008