A hybrid of deep and textural features to differentiate glomerulosclerosis and minimal change disease from glomerulus biopsy images

The minimal change disease (MCD) and glomerulosclerosis (GS) are two common kidney diseases. Unless adequately treated, these diseases leads to chronic kidney diseases. Accurate differentiation of these two diseases is of paramount importance as their methods of treatment and prognoses are different...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical signal processing and control Vol. 70; p. 103020
Main Authors: Santos, Justino Duarte, Veras, Rodrigo de M.S., Silva, Romuere R.V., Aldeman, Nayze L.S., Araújo, Flávio H.D., Duarte, Angelo A., Tavares, João Manuel R.S.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-09-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The minimal change disease (MCD) and glomerulosclerosis (GS) are two common kidney diseases. Unless adequately treated, these diseases leads to chronic kidney diseases. Accurate differentiation of these two diseases is of paramount importance as their methods of treatment and prognoses are different. Thus, this article propose a method capable of differentiating MCD from GS in glomerulus biopsies images based on a new hybrid deep and texture feature space. We conducted an extensive study to determine the best set of features for image representation. Our feature extraction methodology, which includes Haraliks and geostatistics texture descriptors and pre-trained CNNs, resulted in 13,476 characteristics. We then used mutual information to order the elements by importance and select the best set for differentiating MCD from GS using the random forest classifier. The proposed method achieved an accuracy of 90.3% and a Kappa index of 80.5%. Representation of glomerulus biopsy images with a hybrid of deep and textural features facilitates the accurate differentiation of GS and MCD. •An automated method to analyze glomerulus biopsy images.•Accurately differentiates Glomerulosclerosis & Minimal Change Disease.•Advantages of using deep features and textural features are combined.•Highly accurate.•An experiment set combining 13,476 features, 2 filtering methods, and 2 classifiers.
AbstractList The minimal change disease (MCD) and glomerulosclerosis (GS) are two common kidney diseases. Unless adequately treated, these diseases leads to chronic kidney diseases. Accurate differentiation of these two diseases is of paramount importance as their methods of treatment and prognoses are different. Thus, this article propose a method capable of differentiating MCD from GS in glomerulus biopsies images based on a new hybrid deep and texture feature space. We conducted an extensive study to determine the best set of features for image representation. Our feature extraction methodology, which includes Haraliks and geostatistics texture descriptors and pre-trained CNNs, resulted in 13,476 characteristics. We then used mutual information to order the elements by importance and select the best set for differentiating MCD from GS using the random forest classifier. The proposed method achieved an accuracy of 90.3% and a Kappa index of 80.5%. Representation of glomerulus biopsy images with a hybrid of deep and textural features facilitates the accurate differentiation of GS and MCD. •An automated method to analyze glomerulus biopsy images.•Accurately differentiates Glomerulosclerosis & Minimal Change Disease.•Advantages of using deep features and textural features are combined.•Highly accurate.•An experiment set combining 13,476 features, 2 filtering methods, and 2 classifiers.
ArticleNumber 103020
Author Silva, Romuere R.V.
Santos, Justino Duarte
Araújo, Flávio H.D.
Aldeman, Nayze L.S.
Veras, Rodrigo de M.S.
Duarte, Angelo A.
Tavares, João Manuel R.S.
Author_xml – sequence: 1
  givenname: Justino Duarte
  orcidid: 0000-0003-0895-6712
  surname: Santos
  fullname: Santos, Justino Duarte
  email: justinoduarte@ifpi.edu.br
  organization: Instituto Federal de Educação, Ciência e Tecnologia do Piauí, São Raimundo Nonato, PI, Brazil
– sequence: 2
  givenname: Rodrigo de M.S.
  orcidid: 0000-0001-8180-4032
  surname: Veras
  fullname: Veras, Rodrigo de M.S.
  email: rveras@ufpi.edu.br
  organization: Departamento de Computação, Universidade Federal do Piauí, Teresina, PI, Brazil
– sequence: 3
  givenname: Romuere R.V.
  orcidid: 0000-0002-7163-7469
  surname: Silva
  fullname: Silva, Romuere R.V.
  email: romuere@ufpi.edu.br
  organization: Curso de Bacharelado em Sistemas de Informação, Universidade Federal do Piauí, Picos, PI, Brazil
– sequence: 4
  givenname: Nayze L.S.
  surname: Aldeman
  fullname: Aldeman, Nayze L.S.
  email: nayzealdeman@ufpi.edu.br
  organization: Departamento de Medicina Especializada, Universidade Federal do Piauí, Teresina, PI, Brazil
– sequence: 5
  givenname: Flávio H.D.
  orcidid: 0000-0003-2824-2645
  surname: Araújo
  fullname: Araújo, Flávio H.D.
  email: flavio86@ufpi.edu.br
  organization: Curso de Bacharelado em Sistemas de Informação, Universidade Federal do Piauí, Picos, PI, Brazil
– sequence: 6
  givenname: Angelo A.
  orcidid: 0000-0001-7446-1342
  surname: Duarte
  fullname: Duarte, Angelo A.
  email: angeloduarte@uefs.br
  organization: Departamento de Tecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
– sequence: 7
  givenname: João Manuel R.S.
  orcidid: 0000-0001-7603-6526
  surname: Tavares
  fullname: Tavares, João Manuel R.S.
  email: tavares@fe.up.pt
  organization: Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
BookMark eNp9kE1LAzEQhoMo2Fb_gKf8gdbMbvYLvJTiFxS86DnsTiZtyu5mSbZiz_5xU6sePc3LMM_w8kzZee96YuwGxAIE5Le7RRMGXCQigbhIRSLO2AQKmc9LEOX5bxaVvGTTEHZCyLIAOWGfS749NN5q7gzXRAOve81H-hj3vm65oToGCnx0XFtjyFM_2nokvmldR37fuoAteRds-CY729sugrit-w1FJlAdiBvvuj9kH3hj3RAOPJ5uKFyxC1O3ga5_5oy9Pdy_rp7m65fH59VyPcdUynFeGMCqyQUgYFLlGUElMM8laNA6w7ivUCRNSmlTZkUCutJVQWhKNDIr8iydseT0F2Pf4MmowccG_qBAqKNGtVNHjeqoUZ00RujuBFFs9m7Jq4CWeiRtPeGotLP_4V-Q-YCF
CitedBy_id crossref_primary_10_1007_s11042_023_14900_5
crossref_primary_10_1007_s00180_022_01307_3
crossref_primary_10_1080_21681163_2023_2198037
Cites_doi 10.5935/0101-2800.20170005
10.1038/srep46769
10.1109/TMI.2016.2535302
10.1109/CVPR.2016.90
10.2307/2529310
10.1109/TII.2020.3007152
10.1007/s10044-004-0219-0
10.1016/j.engappai.2018.04.024
10.1007/s11263-015-0816-y
10.1109/TMI.2018.2851150
10.1152/ajprenal.00629.2017
10.5935/0101-2800.20150075
10.1007/s11042-017-4608-y
10.1177/001316446002000104
10.21528/CBIC2017-10
10.1109/ICDAR.1995.598994
10.1109/TSMC.1973.4309314
10.1016/0031-3203(95)00067-4
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2021.103020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2021_103020
S1746809421006170
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c344t-7f1c9b601c1c2965e190c6641d1dd5c01c9c02b3e3b85721d9d97ecf8cf457653
ISSN 1746-8094
IngestDate Thu Sep 26 20:22:20 EDT 2024
Fri Feb 23 02:40:56 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Feature extraction
Feature selection
Image analysis
Image classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-7f1c9b601c1c2965e190c6641d1dd5c01c9c02b3e3b85721d9d97ecf8cf457653
ORCID 0000-0001-8180-4032
0000-0001-7446-1342
0000-0001-7603-6526
0000-0003-2824-2645
0000-0003-0895-6712
0000-0002-7163-7469
OpenAccessLink https://repositorio-aberto.up.pt/bitstream/10216/135741/3/488780.1.pdf
ParticipantIDs crossref_primary_10_1016_j_bspc_2021_103020
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_103020
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhao, Black, Marini, McHenry, Kenyon, Patil, Balla, Bartholomew (b5) 2016
Centers for Disease Control and Prevention (b2) 2019
Haralick, Shanmugam (b20) 1973; 3
Cohen (b30) 1960; 20
Yanas, Triantaphyllou (b4) 2019; 138
de Sousa, de Paiva, de Almeida, Silva, Junior, Gattass (b17) 2017; 76
Costa, Valente, Gouveia, Sarinho, Fernandes, Cavalcante, Oliveira, Vasconcelos, Sarinho (b1) 2017; 39
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 770–778.
B.G. Ginley, J.E. Tomaszewski, K.-Y. Jen, A. Fogo, S. Jain, P. Sarder, Computational analysis of the structural progression of human glomeruli in diabetic nephropathy, in: Proceedings of SPIE Medical Imaging, Vol. 10581, 2018, pp. 105810A–1–105810A–6.
Isaaks, Srivastava, Firm (b18) 1989
Moura, Franco, Kirsztajn (b3) 2015; 37
Sheehan, Korstanje (b12) 2018; 315
Chollet (b21) 2017
Rehem, dos Santos, Duarte, de Oliveira, Angelo (b8) 2021
Martínez-García, Zhang, Wan, McGinty (b25) 2019
Martínez-García, Zhang, Suzuki, Zhang (b26) 2021; 17
Vogado, Veras, Araujo, Silva, Aires (b19) 2018; 72
Cover, Thomas (b29) 1991; 2
Sarder, Ginley, Tomaszewski (b6) 2016
Ginley, Tomaszewski, Sarder (b7) 2017
Ojala, Pietikäinen, Harwood (b23) 1996; 29
Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway, Liang (b27) 2016; 35
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (b28) 2015; 115
Marsh, Matlock, Kudose, Liu, Stappenbeck, Gaut, Swamidass (b14) 2018; 37
I.C.d. Araújo, L. Schnitman, A.A. Duarte, W.L. dos Santos, Automated detection of segmental glomerulosclerosis in kidney histopathology, in: XIII Brazilian Congress on Computational Intelligence, 2017.
Barros, Navarro, Duarte, Dos-Santos (b9) 2017; 7
T.K. Ho, Random decision forests, in: Proceedings of 3rd International Conference on Document Analysis and Recognition, Vol. 1, 1995, pp. 278–282.
Silva, Carvalho, Gattass (b24) 2004; 7
Chagas, Souza, Araújo, Aldeman, Duarte, Angelo, dos Santos, Oliveira (b16) 2019
Simonyan, Zisserman (b15) 2014
Landis, Koch (b31) 1977
Centers for Disease Control and Prevention (10.1016/j.bspc.2021.103020_b2) 2019
Martínez-García (10.1016/j.bspc.2021.103020_b26) 2021; 17
Chagas (10.1016/j.bspc.2021.103020_b16) 2019
Russakovsky (10.1016/j.bspc.2021.103020_b28) 2015; 115
10.1016/j.bspc.2021.103020_b10
Sarder (10.1016/j.bspc.2021.103020_b6) 2016
10.1016/j.bspc.2021.103020_b13
10.1016/j.bspc.2021.103020_b11
Martínez-García (10.1016/j.bspc.2021.103020_b25) 2019
Vogado (10.1016/j.bspc.2021.103020_b19) 2018; 72
Tajbakhsh (10.1016/j.bspc.2021.103020_b27) 2016; 35
Cohen (10.1016/j.bspc.2021.103020_b30) 1960; 20
Chollet (10.1016/j.bspc.2021.103020_b21) 2017
Zhao (10.1016/j.bspc.2021.103020_b5) 2016
Isaaks (10.1016/j.bspc.2021.103020_b18) 1989
Rehem (10.1016/j.bspc.2021.103020_b8) 2021
Costa (10.1016/j.bspc.2021.103020_b1) 2017; 39
Ginley (10.1016/j.bspc.2021.103020_b7) 2017
Sheehan (10.1016/j.bspc.2021.103020_b12) 2018; 315
Ojala (10.1016/j.bspc.2021.103020_b23) 1996; 29
Barros (10.1016/j.bspc.2021.103020_b9) 2017; 7
de Sousa (10.1016/j.bspc.2021.103020_b17) 2017; 76
Cover (10.1016/j.bspc.2021.103020_b29) 1991; 2
Marsh (10.1016/j.bspc.2021.103020_b14) 2018; 37
10.1016/j.bspc.2021.103020_b22
Moura (10.1016/j.bspc.2021.103020_b3) 2015; 37
Silva (10.1016/j.bspc.2021.103020_b24) 2004; 7
Yanas (10.1016/j.bspc.2021.103020_b4) 2019; 138
Simonyan (10.1016/j.bspc.2021.103020_b15) 2014
Landis (10.1016/j.bspc.2021.103020_b31) 1977
Haralick (10.1016/j.bspc.2021.103020_b20) 1973; 3
References_xml – start-page: 97910F
  year: 2016
  ident: b6
  article-title: Automated renal histopathology: digital extraction and quantification of renal pathology
  publication-title: Medical Imaging 2016: Digital Pathology, Vol. 9791
  contributor:
    fullname: Tomaszewski
– volume: 138
  year: 2019
  ident: b4
  article-title: A systematic survey of computer-aided diagnosis in medicine: Past and present developments
  publication-title: Expert Syst. Appl.
  contributor:
    fullname: Triantaphyllou
– year: 2019
  ident: b16
  article-title: Classification of glomerular hypercellularity using convolutional features and support vector machine
  contributor:
    fullname: Oliveira
– volume: 3
  start-page: 610
  year: 1973
  end-page: 621
  ident: b20
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
  contributor:
    fullname: Shanmugam
– volume: 35
  start-page: 1299
  year: 2016
  end-page: 1312
  ident: b27
  article-title: Convolutional neural networks for medical image analysis: Full training or fine tuning?
  publication-title: IEEE Trans. Med. Imaging
  contributor:
    fullname: Liang
– volume: 17
  start-page: 839
  year: 2021
  end-page: 848
  ident: b26
  article-title: Deep recurrent entropy adaptive model for system reliability monitoring
  publication-title: IEEE Trans. Ind. Inf.
  contributor:
    fullname: Zhang
– start-page: 101400G
  year: 2017
  ident: b7
  article-title: Automatic computational labeling of glomerular textural boundaries
  publication-title: Medical Imaging 2017: Digital Pathology, Vol. 10140
  contributor:
    fullname: Sarder
– start-page: 115
  year: 2021
  end-page: 125
  ident: b8
  article-title: Automatic glomerulus detection in renal histological images
  publication-title: Medical Imaging 2021: Digital Pathology, Vol. 11603
  contributor:
    fullname: Angelo
– volume: 7
  start-page: 46769
  year: 2017
  ident: b9
  article-title: PathoSpotter-K: A computational tool for the automatic identification of glomerular lesions in histological images of kidneys
  publication-title: Sci. Rep.
  contributor:
    fullname: Dos-Santos
– volume: 7
  start-page: 227
  year: 2004
  end-page: 234
  ident: b24
  article-title: Analysis of spatial variability using geostatistical functions for diagnosis of lung nodule in computerized tomography images
  publication-title: Pattern Anal. Appl.
  contributor:
    fullname: Gattass
– volume: 76
  start-page: 19173
  year: 2017
  end-page: 19190
  ident: b17
  article-title: Texture based on geostatistic for glaucoma diagnosis from fundus eye image
  publication-title: Multimedia Tools Appl.
  contributor:
    fullname: Gattass
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  ident: b30
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
  contributor:
    fullname: Cohen
– year: 1989
  ident: b18
  article-title: An Introduction To Applied Geostatistics
  contributor:
    fullname: Firm
– start-page: 159
  year: 1977
  end-page: 174
  ident: b31
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  contributor:
    fullname: Koch
– volume: 39
  start-page: 29
  year: 2017
  end-page: 35
  ident: b1
  article-title: Comparative analysis of primary and secondary glomerulopathies in the northeast of Brazil: data from the Pernambuco Registry of Glomerulopathie-REPEG
  publication-title: Braz. J. Nephrol.
  contributor:
    fullname: Sarinho
– start-page: 1610
  year: 2017
  end-page: 02357
  ident: b21
  article-title: Xception: Deep learning with depthwise separable convolutions
  contributor:
    fullname: Chollet
– year: 2014
  ident: b15
  article-title: Very deep convolutional networks for large-scale image recognition
  contributor:
    fullname: Zisserman
– volume: 72
  start-page: 415
  year: 2018
  end-page: 422
  ident: b19
  article-title: Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification
  publication-title: Eng. Appl. Artif. Intell.
  contributor:
    fullname: Aires
– volume: 29
  start-page: 51
  year: 1996
  end-page: 59
  ident: b23
  article-title: A comparative study of texture measures with classification based on featured distributions
  publication-title: Pattern Recognit.
  contributor:
    fullname: Harwood
– year: 2019
  ident: b2
  article-title: Chronic Kidney Disease in the United States, 2019
  contributor:
    fullname: Centers for Disease Control and Prevention
– volume: 37
  start-page: 2718
  year: 2018
  end-page: 2728
  ident: b14
  article-title: Deep learning global glomerulosclerosis in transplant kidney frozen sections
  publication-title: IEEE Trans. Med. Imaging
  contributor:
    fullname: Swamidass
– start-page: 165
  year: 2016
  end-page: 174
  ident: b5
  article-title: Automatic glomerulus extraction in whole slide images towards computer aided diagnosis
  publication-title: 12th International Conference on E-Science
  contributor:
    fullname: Bartholomew
– start-page: 649
  year: 2019
  end-page: 654
  ident: b25
  article-title: Visually interpretable profile extraction with an autoencoder for health monitoring of industrial systems
  publication-title: 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics
  contributor:
    fullname: McGinty
– volume: 37
  start-page: 475
  year: 2015
  end-page: 480
  ident: b3
  article-title: Minimal change disease and focal segmental glomerulosclerosis in adults: response to steroids and risk of renal failure
  publication-title: Braz. J. Nephrol.
  contributor:
    fullname: Kirsztajn
– volume: 315
  start-page: F1644
  year: 2018
  end-page: F1651
  ident: b12
  article-title: Automatic glomerular identification and quantification of histological phenotypes using image analysis and machine learning
  publication-title: Am. J. Physiol.-Renal Physiol.
  contributor:
    fullname: Korstanje
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: b28
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  contributor:
    fullname: Fei-Fei
– volume: 2
  start-page: 1
  year: 1991
  end-page: 55
  ident: b29
  article-title: Entropy, relative entropy and mutual information
  publication-title: Elem. Inf. Theory
  contributor:
    fullname: Thomas
– volume: 39
  start-page: 29
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2021.103020_b1
  article-title: Comparative analysis of primary and secondary glomerulopathies in the northeast of Brazil: data from the Pernambuco Registry of Glomerulopathie-REPEG
  publication-title: Braz. J. Nephrol.
  doi: 10.5935/0101-2800.20170005
  contributor:
    fullname: Costa
– volume: 7
  start-page: 46769
  year: 2017
  ident: 10.1016/j.bspc.2021.103020_b9
  article-title: PathoSpotter-K: A computational tool for the automatic identification of glomerular lesions in histological images of kidneys
  publication-title: Sci. Rep.
  doi: 10.1038/srep46769
  contributor:
    fullname: Barros
– year: 2019
  ident: 10.1016/j.bspc.2021.103020_b2
  contributor:
    fullname: Centers for Disease Control and Prevention
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  ident: 10.1016/j.bspc.2021.103020_b27
  article-title: Convolutional neural networks for medical image analysis: Full training or fine tuning?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535302
  contributor:
    fullname: Tajbakhsh
– start-page: 101400G
  year: 2017
  ident: 10.1016/j.bspc.2021.103020_b7
  article-title: Automatic computational labeling of glomerular textural boundaries
  contributor:
    fullname: Ginley
– ident: 10.1016/j.bspc.2021.103020_b22
  doi: 10.1109/CVPR.2016.90
– start-page: 159
  year: 1977
  ident: 10.1016/j.bspc.2021.103020_b31
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
  contributor:
    fullname: Landis
– volume: 17
  start-page: 839
  issue: 2
  year: 2021
  ident: 10.1016/j.bspc.2021.103020_b26
  article-title: Deep recurrent entropy adaptive model for system reliability monitoring
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.3007152
  contributor:
    fullname: Martínez-García
– volume: 2
  start-page: 1
  year: 1991
  ident: 10.1016/j.bspc.2021.103020_b29
  article-title: Entropy, relative entropy and mutual information
  publication-title: Elem. Inf. Theory
  contributor:
    fullname: Cover
– volume: 138
  year: 2019
  ident: 10.1016/j.bspc.2021.103020_b4
  article-title: A systematic survey of computer-aided diagnosis in medicine: Past and present developments
  publication-title: Expert Syst. Appl.
  contributor:
    fullname: Yanas
– volume: 7
  start-page: 227
  issue: 3
  year: 2004
  ident: 10.1016/j.bspc.2021.103020_b24
  article-title: Analysis of spatial variability using geostatistical functions for diagnosis of lung nodule in computerized tomography images
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-004-0219-0
  contributor:
    fullname: Silva
– volume: 72
  start-page: 415
  year: 2018
  ident: 10.1016/j.bspc.2021.103020_b19
  article-title: Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.04.024
  contributor:
    fullname: Vogado
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.bspc.2021.103020_b28
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
  contributor:
    fullname: Russakovsky
– start-page: 165
  year: 2016
  ident: 10.1016/j.bspc.2021.103020_b5
  article-title: Automatic glomerulus extraction in whole slide images towards computer aided diagnosis
  contributor:
    fullname: Zhao
– start-page: 115
  year: 2021
  ident: 10.1016/j.bspc.2021.103020_b8
  article-title: Automatic glomerulus detection in renal histological images
  contributor:
    fullname: Rehem
– start-page: 97910F
  year: 2016
  ident: 10.1016/j.bspc.2021.103020_b6
  article-title: Automated renal histopathology: digital extraction and quantification of renal pathology
  contributor:
    fullname: Sarder
– start-page: 1610
  year: 2017
  ident: 10.1016/j.bspc.2021.103020_b21
  contributor:
    fullname: Chollet
– year: 2014
  ident: 10.1016/j.bspc.2021.103020_b15
  contributor:
    fullname: Simonyan
– volume: 37
  start-page: 2718
  issue: 12
  year: 2018
  ident: 10.1016/j.bspc.2021.103020_b14
  article-title: Deep learning global glomerulosclerosis in transplant kidney frozen sections
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2851150
  contributor:
    fullname: Marsh
– volume: 315
  start-page: F1644
  issue: 6
  year: 2018
  ident: 10.1016/j.bspc.2021.103020_b12
  article-title: Automatic glomerular identification and quantification of histological phenotypes using image analysis and machine learning
  publication-title: Am. J. Physiol.-Renal Physiol.
  doi: 10.1152/ajprenal.00629.2017
  contributor:
    fullname: Sheehan
– volume: 37
  start-page: 475
  issue: 4
  year: 2015
  ident: 10.1016/j.bspc.2021.103020_b3
  article-title: Minimal change disease and focal segmental glomerulosclerosis in adults: response to steroids and risk of renal failure
  publication-title: Braz. J. Nephrol.
  doi: 10.5935/0101-2800.20150075
  contributor:
    fullname: Moura
– volume: 76
  start-page: 19173
  issue: 18
  year: 2017
  ident: 10.1016/j.bspc.2021.103020_b17
  article-title: Texture based on geostatistic for glaucoma diagnosis from fundus eye image
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-017-4608-y
  contributor:
    fullname: de Sousa
– year: 1989
  ident: 10.1016/j.bspc.2021.103020_b18
  contributor:
    fullname: Isaaks
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  ident: 10.1016/j.bspc.2021.103020_b30
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
  contributor:
    fullname: Cohen
– ident: 10.1016/j.bspc.2021.103020_b10
  doi: 10.21528/CBIC2017-10
– ident: 10.1016/j.bspc.2021.103020_b11
– ident: 10.1016/j.bspc.2021.103020_b13
  doi: 10.1109/ICDAR.1995.598994
– volume: 3
  start-page: 610
  issue: 6
  year: 1973
  ident: 10.1016/j.bspc.2021.103020_b20
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1973.4309314
  contributor:
    fullname: Haralick
– year: 2019
  ident: 10.1016/j.bspc.2021.103020_b16
  contributor:
    fullname: Chagas
– start-page: 649
  year: 2019
  ident: 10.1016/j.bspc.2021.103020_b25
  article-title: Visually interpretable profile extraction with an autoencoder for health monitoring of industrial systems
  contributor:
    fullname: Martínez-García
– volume: 29
  start-page: 51
  issue: 1
  year: 1996
  ident: 10.1016/j.bspc.2021.103020_b23
  article-title: A comparative study of texture measures with classification based on featured distributions
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(95)00067-4
  contributor:
    fullname: Ojala
SSID ssj0048714
Score 2.3317316
Snippet The minimal change disease (MCD) and glomerulosclerosis (GS) are two common kidney diseases. Unless adequately treated, these diseases leads to chronic kidney...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 103020
SubjectTerms Deep learning
Feature extraction
Feature selection
Image analysis
Image classification
Title A hybrid of deep and textural features to differentiate glomerulosclerosis and minimal change disease from glomerulus biopsy images
URI https://dx.doi.org/10.1016/j.bspc.2021.103020
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6l7QUOiKdoeWgP3CxbXr99tGhQQaiHplS9WfV6HFIlsRXHSOHKH2fGu2sHihAgcbGidWYd73zZnZ2d-YaxN0kMEYhA2kmQgh3EUNoJxKHtSdzG4ZpURD1P99ksPr9OTqfBdDIxdVzHtv-qaWxDXVPm7F9oe-gUG_Az6hyvqHW8_pHeM-vzjrKwyAosARoVIolTcM-vUUFP5NnTOpjaKPgf3wIxg6xg0y3rFjvEpXOhyJuJemRFHCJ9FoI5z1FZKUaka61iUTftzsKvznVQojko7tP7Ve7lYk6mb6NSE0xypI6VHzw9VNRYYYvqjK1r67QPOzX3r2CjUtAu6nKzmONb4LzkzJxBfrH8ouzhetXh21kXztVwM1uWoD2-5ze7r2B9NJLa7-GJIbBLO-NMQs4Y_UTzdxwQv7Kqm-zAXptwk_1JX1UrubN-KFfGrVO0DfFbeoJICVzPHVfLIYZxRv3So3DTTHage8COPJztcLI9yt5Prz8YgwC3hD3F_PDbdO6WCjP8-Um_to_2bJ7Lh-yB3qzwTKHsEZvA-jG7v0dh-YR9y7jCG68rTnjjqFRu8MYN3vi25j_gjd_FWy-p8cYV3rjGGye88RFvXOGNK7w9ZZ_eTS_fntm6sIct_SDY2nElZFpErpBCemkUAlqlMooCUYqyDCW2p9L1Ch_8IgljT5RpmcYgq0RWAe6PQ_8ZO1zXa3jOuChieVOFuE4lUUBOUahCz63o8N7zq1QeM8sMZ94o_pbcBDbe5jT4OQ1-rgb_mIVmxHNtgSrLMkeA_Ebu5B_lXrB7I7RfssPtpoNX7KAtu9caRN8BtEmubg
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+of+deep+and+textural+features+to+differentiate+glomerulosclerosis+and+minimal+change+disease+from+glomerulus+biopsy+images&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Santos%2C+Justino+Duarte&rft.au=Veras%2C+Rodrigo+de+M.S.&rft.au=Silva%2C+Romuere+R.V.&rft.au=Aldeman%2C+Nayze+L.S.&rft.date=2021-09-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=70&rft_id=info:doi/10.1016%2Fj.bspc.2021.103020&rft.externalDocID=S1746809421006170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon