KNCM: Kernel Neutrosophic c-Means Clustering
The block diagram of the proposed Kernel-NCM approach. [Display omitted] •We proposed a new Kernel Neutrosophic c- Means (KNCM) algorithm for improving the NCM method on the nonlinearly separable datasets.•In addition, new membership and prototype update equations were derived from minimization of t...
Saved in:
Published in: | Applied soft computing Vol. 52; pp. 714 - 724 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-03-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The block diagram of the proposed Kernel-NCM approach.
[Display omitted]
•We proposed a new Kernel Neutrosophic c- Means (KNCM) algorithm for improving the NCM method on the nonlinearly separable datasets.•In addition, new membership and prototype update equations were derived from minimization of the proposed cost function.•The developed KNCM method was applied on variety of applications such as toy dataset clustering, real dataset clustering and noisy image segmentation. The obtained results were compared with the KFCM method. The obtained results showed that the proposed KNCM method yielded better results than KFCM.
Data clustering is an important step in data mining and machine learning. It is especially crucial to analyze the data structures for further procedures. Recently a new clustering algorithm known as ‘neutrosophic c-means’ (NCM) was proposed in order to alleviate the limitations of the popular fuzzy c-means (FCM) clustering algorithm by introducing a new objective function which contains two types of rejection. The ambiguity rejection which concerned patterns lying near the cluster boundaries, and the distance rejection was dealing with patterns that are far away from the clusters. In this paper, we extend the idea of NCM for nonlinear-shaped data clustering by incorporating the kernel function into NCM. The new clustering algorithm is called Kernel Neutrosophic c-Means (KNCM), and has been evaluated through extensive experiments. Nonlinear-shaped toy datasets, real datasets and images were used in the experiments for demonstrating the efficiency of the proposed method. A comparison between Kernel FCM (KFCM) and KNCM was also accomplished in order to visualize the performance of both methods. According to the obtained results, the proposed KNCM produced better results than KFCM. |
---|---|
AbstractList | The block diagram of the proposed Kernel-NCM approach.
[Display omitted]
•We proposed a new Kernel Neutrosophic c- Means (KNCM) algorithm for improving the NCM method on the nonlinearly separable datasets.•In addition, new membership and prototype update equations were derived from minimization of the proposed cost function.•The developed KNCM method was applied on variety of applications such as toy dataset clustering, real dataset clustering and noisy image segmentation. The obtained results were compared with the KFCM method. The obtained results showed that the proposed KNCM method yielded better results than KFCM.
Data clustering is an important step in data mining and machine learning. It is especially crucial to analyze the data structures for further procedures. Recently a new clustering algorithm known as ‘neutrosophic c-means’ (NCM) was proposed in order to alleviate the limitations of the popular fuzzy c-means (FCM) clustering algorithm by introducing a new objective function which contains two types of rejection. The ambiguity rejection which concerned patterns lying near the cluster boundaries, and the distance rejection was dealing with patterns that are far away from the clusters. In this paper, we extend the idea of NCM for nonlinear-shaped data clustering by incorporating the kernel function into NCM. The new clustering algorithm is called Kernel Neutrosophic c-Means (KNCM), and has been evaluated through extensive experiments. Nonlinear-shaped toy datasets, real datasets and images were used in the experiments for demonstrating the efficiency of the proposed method. A comparison between Kernel FCM (KFCM) and KNCM was also accomplished in order to visualize the performance of both methods. According to the obtained results, the proposed KNCM produced better results than KFCM. |
Author | Guo, Yanhui Şengür, Abdulkadir Akbulut, Yaman Polat, Kemal |
Author_xml | – sequence: 1 givenname: Yaman surname: Akbulut fullname: Akbulut, Yaman organization: Firat University, Technology Faculty, Electrical and Electronics Engineering Dept., Elazig, Turkey – sequence: 2 givenname: Abdulkadir surname: Şengür fullname: Şengür, Abdulkadir organization: Firat University, Technology Faculty, Electrical and Electronics Engineering Dept., Elazig, Turkey – sequence: 3 givenname: Yanhui surname: Guo fullname: Guo, Yanhui organization: University of Illinois at Springfield, Department of Computer Science, Springfield, Illinois, USA – sequence: 4 givenname: Kemal surname: Polat fullname: Polat, Kemal email: kemal_polat2003@yahoo.com organization: Abant Izzet Baysal University, Engineering Faculty, Electrical and Electronics Engineering Dept., Bolu, Turkey |
BookMark | eNp9j8tOwzAURC0EEm3hB1jlA0iwnRsnRmxQxEt9sIG15ccNuCpJZadI_D2OyprVHY1mrubMyWk_9EjIFaMFo0zcbAsdB1vwpJNRUMpOyIw1Nc-laNhp0pVocpAgzsk8xm0KCMmbGblebtr1bbbE0OMu2-BhDEMc9p_eZjZfo-5j1u4OccTg-48LctbpXcTLv7sg748Pb-1zvnp9emnvV7ktAcYcTMW1scCBSyOgqYyoXEdZ7YCa2oDjrgFXU1bKEhCxM1LXkjKpNULHXbkg_PjXpjExYKf2wX_p8KMYVROv2qqJV028k5dwUunuWMK07NtjUNF67C06H9COyg3-v_ovAj9fFw |
CitedBy_id | crossref_primary_10_1016_j_asoc_2022_109519 crossref_primary_10_1007_s10462_018_9652_0 crossref_primary_10_1007_s11277_017_5147_6 crossref_primary_10_1007_s00521_022_07313_2 crossref_primary_10_3233_JIFS_190681 crossref_primary_10_1016_j_bspc_2021_102682 crossref_primary_10_1016_j_knosys_2020_106672 crossref_primary_10_1080_03772063_2023_2228754 crossref_primary_10_3390_math11081931 crossref_primary_10_3233_JIFS_212812 crossref_primary_10_1016_j_asoc_2017_04_071 crossref_primary_10_3233_JIFS_210863 crossref_primary_10_1155_2019_3821025 crossref_primary_10_1016_j_aej_2024_03_092 crossref_primary_10_1016_j_engappai_2019_103411 crossref_primary_10_1007_s00521_023_09115_6 crossref_primary_10_1007_s41066_024_00452_y crossref_primary_10_1016_j_compind_2019_04_005 crossref_primary_10_1142_S0218126620502606 crossref_primary_10_1186_s12859_020_03775_0 |
Cites_doi | 10.1016/j.patrec.2008.04.016 10.1016/S0031-3203(99)00110-7 10.1080/01969727308546046 10.1016/j.patrec.2009.04.008 10.1023/B:NEPL.0000011135.19145.1b 10.1109/91.227387 10.1109/TNN.2011.2147798 10.1016/j.patcog.2015.02.018 10.1016/S0019-9958(69)90591-9 10.1016/j.patcog.2007.08.014 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2016.10.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 724 |
ExternalDocumentID | 10_1016_j_asoc_2016_10_001 S1568494616305117 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c344t-4b52abc42429b6485b65df017d40b7b4d2d84d7013934eeefb9a79019aae4f2d3 |
ISSN | 1568-4946 |
IngestDate | Thu Sep 26 18:20:19 EDT 2024 Fri Feb 23 02:24:51 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neutrosophic c-means Kernel function Fuzzy clustering Data clustering |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c344t-4b52abc42429b6485b65df017d40b7b4d2d84d7013934eeefb9a79019aae4f2d3 |
OpenAccessLink | https://zenodo.org/record/1041560/files/KNCMKernelNeutrosophic.pdf |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2016_10_001 elsevier_sciencedirect_doi_10_1016_j_asoc_2016_10_001 |
PublicationCentury | 2000 |
PublicationDate | March 2017 2017-03-00 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: March 2017 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Pal, Pal, Bezdek (bib0040) 1997 Zhang, Chen (bib0070) 2003; 18 Ménard, Demko, Loonis (bib0045) 2000; 33 Gustafson, Kessel (bib0025) 1979; 10 Ng, Jordan, Weiss (bib0075) 2002; 2 Masson, Denoeux (bib0055) 2009; 30 R.N. Dave, Clustering of relational data containing noise and outliers In: FUZZ’IEEE 98, vol. 2, pp. 1411–1416 (1998). Ruspini (bib0010) 1969; 15 Smarandache (bib0060) 2003 Dunn (bib0015) 1974; 3 Guo, Sengur (bib0065) 2015; 48 Masson, Denoeux (bib0050) 2008; 41 Yang, Tsai (bib0085) 2008; 29 Bezdek (bib0020) 1987 Wang (bib0080) 2011; 22 Andenberg (bib0005) 1973 Krishnapuram, Keller (bib0035) 1993; 1 Wang (10.1016/j.asoc.2016.10.001_bib0080) 2011; 22 Pal (10.1016/j.asoc.2016.10.001_bib0040) 1997 Bezdek (10.1016/j.asoc.2016.10.001_bib0020) 1987 Masson (10.1016/j.asoc.2016.10.001_bib0050) 2008; 41 Yang (10.1016/j.asoc.2016.10.001_bib0085) 2008; 29 Masson (10.1016/j.asoc.2016.10.001_bib0055) 2009; 30 Ng (10.1016/j.asoc.2016.10.001_bib0075) 2002; 2 Guo (10.1016/j.asoc.2016.10.001_bib0065) 2015; 48 Krishnapuram (10.1016/j.asoc.2016.10.001_bib0035) 1993; 1 Ménard (10.1016/j.asoc.2016.10.001_bib0045) 2000; 33 Gustafson (10.1016/j.asoc.2016.10.001_bib0025) 1979; 10 Zhang (10.1016/j.asoc.2016.10.001_bib0070) 2003; 18 Smarandache (10.1016/j.asoc.2016.10.001_bib0060) 2003 10.1016/j.asoc.2016.10.001_bib0030 Ruspini (10.1016/j.asoc.2016.10.001_bib0010) 1969; 15 Dunn (10.1016/j.asoc.2016.10.001_bib0015) 1974; 3 Andenberg (10.1016/j.asoc.2016.10.001_bib0005) 1973 |
References_xml | – year: 2003 ident: bib0060 article-title: A Unifying Field in Logics Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability contributor: fullname: Smarandache – volume: 3 start-page: 32 year: 1974 end-page: 57 ident: bib0015 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J. Cybernet. contributor: fullname: Dunn – volume: 48 start-page: 2710 year: 2015 end-page: 2724 ident: bib0065 article-title: NCM: Neutrosophic c-means Clustering Algorithm publication-title: Pattern Recognit. contributor: fullname: Sengur – start-page: 11 year: 1997 end-page: 21 ident: bib0040 article-title: A mixed c-means clustering model publication-title: Proceedings of the Sixth IEEE International Conference on Fuzzy Systems contributor: fullname: Bezdek – volume: 2 start-page: 849 year: 2002 end-page: 856 ident: bib0075 article-title: On spectral clustering: analysis and an algorithm publication-title: Adv Neural Inf. Process. Syst. contributor: fullname: Weiss – volume: 10 start-page: 761 year: 1979 end-page: 766 ident: bib0025 article-title: Fuzzy clustering with a fuzzy covariance matrix publication-title: Proceedings of IEEE CDC contributor: fullname: Kessel – year: 1973 ident: bib0005 article-title: Cluster Analysis for Applications contributor: fullname: Andenberg – volume: 41 start-page: 1384 year: 2008 end-page: 1397 ident: bib0050 article-title: ECM: an evidential version of the fuzzy c-means algorithm publication-title: Pattern Recognit. contributor: fullname: Denoeux – volume: 1 start-page: 98 year: 1993 end-page: 110 ident: bib0035 article-title: A possibilistic approach to clustering publication-title: IEEE Trans. Fuzzy Syst. contributor: fullname: Keller – volume: 29 start-page: 1713 year: 2008 end-page: 1725 ident: bib0085 article-title: A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction publication-title: Pattern Recognit. Lett. contributor: fullname: Tsai – volume: 33 start-page: 1219 year: 2000 end-page: 1237 ident: bib0045 article-title: The fuzzy c publication-title: Pattern Recognit. contributor: fullname: Loonis – volume: 30 start-page: 1015 year: 2009 end-page: 1026 ident: bib0055 article-title: RECM: Relational Evidential c-means Algorithm publication-title: Pattern Recognit. Lett. contributor: fullname: Denoeux – volume: 22 start-page: 1149 year: 2011 end-page: 1161 ident: bib0080 article-title: Spectral clustering on multiple manifolds publication-title: IEEE Trans. Neural Networks contributor: fullname: Wang – volume: 18 start-page: 155 year: 2003 end-page: 162 ident: bib0070 article-title: Clustering incomplete data using kernel-based fuzzy c-means algorithm publication-title: Neural Process. Lett. contributor: fullname: Chen – year: 1987 ident: bib0020 article-title: Pattern Recognition with Fuzzy Objective Function Algorithms contributor: fullname: Bezdek – volume: 15 start-page: 22 year: 1969 end-page: 32 ident: bib0010 article-title: A new approach to clustering publication-title: Inf. Control contributor: fullname: Ruspini – volume: 29 start-page: 1713 issue: 12 year: 2008 ident: 10.1016/j.asoc.2016.10.001_bib0085 article-title: A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.04.016 contributor: fullname: Yang – volume: 33 start-page: 1219 year: 2000 ident: 10.1016/j.asoc.2016.10.001_bib0045 article-title: The fuzzy c+2 means: solving the ambiguity rejection in clustering publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(99)00110-7 contributor: fullname: Ménard – volume: 3 start-page: 32 year: 1974 ident: 10.1016/j.asoc.2016.10.001_bib0015 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J. Cybernet. doi: 10.1080/01969727308546046 contributor: fullname: Dunn – year: 1987 ident: 10.1016/j.asoc.2016.10.001_bib0020 contributor: fullname: Bezdek – volume: 10 start-page: 761 year: 1979 ident: 10.1016/j.asoc.2016.10.001_bib0025 article-title: Fuzzy clustering with a fuzzy covariance matrix contributor: fullname: Gustafson – year: 2003 ident: 10.1016/j.asoc.2016.10.001_bib0060 contributor: fullname: Smarandache – volume: 30 start-page: 1015 year: 2009 ident: 10.1016/j.asoc.2016.10.001_bib0055 article-title: RECM: Relational Evidential c-means Algorithm publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.04.008 contributor: fullname: Masson – volume: 18 start-page: 155 issue: 3 year: 2003 ident: 10.1016/j.asoc.2016.10.001_bib0070 article-title: Clustering incomplete data using kernel-based fuzzy c-means algorithm publication-title: Neural Process. Lett. doi: 10.1023/B:NEPL.0000011135.19145.1b contributor: fullname: Zhang – volume: 2 start-page: 849 year: 2002 ident: 10.1016/j.asoc.2016.10.001_bib0075 article-title: On spectral clustering: analysis and an algorithm publication-title: Adv Neural Inf. Process. Syst. contributor: fullname: Ng – volume: 1 start-page: 98 issue: 2 year: 1993 ident: 10.1016/j.asoc.2016.10.001_bib0035 article-title: A possibilistic approach to clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.227387 contributor: fullname: Krishnapuram – volume: 22 start-page: 1149 issue: 7 year: 2011 ident: 10.1016/j.asoc.2016.10.001_bib0080 article-title: Spectral clustering on multiple manifolds publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2011.2147798 contributor: fullname: Wang – year: 1973 ident: 10.1016/j.asoc.2016.10.001_bib0005 contributor: fullname: Andenberg – volume: 48 start-page: 2710 issue: 8 year: 2015 ident: 10.1016/j.asoc.2016.10.001_bib0065 article-title: NCM: Neutrosophic c-means Clustering Algorithm publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.02.018 contributor: fullname: Guo – volume: 15 start-page: 22 year: 1969 ident: 10.1016/j.asoc.2016.10.001_bib0010 article-title: A new approach to clustering publication-title: Inf. Control doi: 10.1016/S0019-9958(69)90591-9 contributor: fullname: Ruspini – start-page: 11 year: 1997 ident: 10.1016/j.asoc.2016.10.001_bib0040 article-title: A mixed c-means clustering model contributor: fullname: Pal – ident: 10.1016/j.asoc.2016.10.001_bib0030 – volume: 41 start-page: 1384 year: 2008 ident: 10.1016/j.asoc.2016.10.001_bib0050 article-title: ECM: an evidential version of the fuzzy c-means algorithm publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.08.014 contributor: fullname: Masson |
SSID | ssj0016928 |
Score | 2.3854365 |
Snippet | The block diagram of the proposed Kernel-NCM approach.
[Display omitted]
•We proposed a new Kernel Neutrosophic c- Means (KNCM) algorithm for improving the NCM... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 714 |
SubjectTerms | Data clustering Fuzzy clustering Kernel function Neutrosophic c-means |
Title | KNCM: Kernel Neutrosophic c-Means Clustering |
URI | https://dx.doi.org/10.1016/j.asoc.2016.10.001 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZ4XHopLW1VoFQ5sKetESR-9kZDKh6CC1TiFtmxowJLQEv8_xnHToKgQqVSL9Gud511PKNvPs_OA6EtxWmtrKTYUGkwnL80FkorTComaCp24I13DRyc8dMLsV-QYnRlj2P_VdIwBrL2mbOvkPZwUxiA1yBzuILU4fpXcj8-zU_8Mf_Yzhs7AxBz7bzrVXBZTSt8YsE0TfOZ8_UReqvVF6GNhPQekLkLNXdt_w2vEdfawbo7yFY3o05NcjqRhQXIyLPJjzz0xtbGza4VmMshvMfdhpnNb3c5wDEcq9uQHHQTHyv6H8CmDQFYwSn2LDEm4CgTmMjoXbRhTPAUSxY6tPTgG8rXRvTkIZ80GmIekqufYXxwN1xtK1BfH5vHtrvwvN3Rog1xhmd-HX4ZwDoBfXb5IlpOAZEAEJf3DouLo-EPJya7NrzDumN-VQgFfPpLf-Ywj3jJ-Tv0Nh4okr2gCe_Rgm1W0UrfrCOJ2P0BffOK8T0JapE8VoskqkUyqsVH9OtncZ4f4NgqA1cZIS0mmqZKVwQIl9SMCKoZNTVIy5AdzTUxqRHEcM_3M2KtrbVUHKigVMqSOjXZJ7TU3Db2M0ponUmmtUlrwzxzEZWGzwVXlfHleuUamvYPX96FiihlHyp4VfqtKv1W-THYqjVE-_0pI6cLXK0Ecb4wb_0f522gN6OSfkFL7dzZTbR4b9zXKPIHpHZo8Q |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KNCM%3A+Kernel+Neutrosophic+c-Means+Clustering&rft.jtitle=Applied+soft+computing&rft.au=Akbulut%2C+Yaman&rft.au=%C5%9Eeng%C3%BCr%2C+Abdulkadir&rft.au=Guo%2C+Yanhui&rft.au=Polat%2C+Kemal&rft.date=2017-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=52&rft.spage=714&rft.epage=724&rft_id=info:doi/10.1016%2Fj.asoc.2016.10.001&rft.externalDocID=S1568494616305117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |