KNCM: Kernel Neutrosophic c-Means Clustering

The block diagram of the proposed Kernel-NCM approach. [Display omitted] •We proposed a new Kernel Neutrosophic c- Means (KNCM) algorithm for improving the NCM method on the nonlinearly separable datasets.•In addition, new membership and prototype update equations were derived from minimization of t...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 52; pp. 714 - 724
Main Authors: Akbulut, Yaman, Şengür, Abdulkadir, Guo, Yanhui, Polat, Kemal
Format: Journal Article
Language:English
Published: Elsevier B.V 01-03-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The block diagram of the proposed Kernel-NCM approach. [Display omitted] •We proposed a new Kernel Neutrosophic c- Means (KNCM) algorithm for improving the NCM method on the nonlinearly separable datasets.•In addition, new membership and prototype update equations were derived from minimization of the proposed cost function.•The developed KNCM method was applied on variety of applications such as toy dataset clustering, real dataset clustering and noisy image segmentation. The obtained results were compared with the KFCM method. The obtained results showed that the proposed KNCM method yielded better results than KFCM. Data clustering is an important step in data mining and machine learning. It is especially crucial to analyze the data structures for further procedures. Recently a new clustering algorithm known as ‘neutrosophic c-means’ (NCM) was proposed in order to alleviate the limitations of the popular fuzzy c-means (FCM) clustering algorithm by introducing a new objective function which contains two types of rejection. The ambiguity rejection which concerned patterns lying near the cluster boundaries, and the distance rejection was dealing with patterns that are far away from the clusters. In this paper, we extend the idea of NCM for nonlinear-shaped data clustering by incorporating the kernel function into NCM. The new clustering algorithm is called Kernel Neutrosophic c-Means (KNCM), and has been evaluated through extensive experiments. Nonlinear-shaped toy datasets, real datasets and images were used in the experiments for demonstrating the efficiency of the proposed method. A comparison between Kernel FCM (KFCM) and KNCM was also accomplished in order to visualize the performance of both methods. According to the obtained results, the proposed KNCM produced better results than KFCM.
AbstractList The block diagram of the proposed Kernel-NCM approach. [Display omitted] •We proposed a new Kernel Neutrosophic c- Means (KNCM) algorithm for improving the NCM method on the nonlinearly separable datasets.•In addition, new membership and prototype update equations were derived from minimization of the proposed cost function.•The developed KNCM method was applied on variety of applications such as toy dataset clustering, real dataset clustering and noisy image segmentation. The obtained results were compared with the KFCM method. The obtained results showed that the proposed KNCM method yielded better results than KFCM. Data clustering is an important step in data mining and machine learning. It is especially crucial to analyze the data structures for further procedures. Recently a new clustering algorithm known as ‘neutrosophic c-means’ (NCM) was proposed in order to alleviate the limitations of the popular fuzzy c-means (FCM) clustering algorithm by introducing a new objective function which contains two types of rejection. The ambiguity rejection which concerned patterns lying near the cluster boundaries, and the distance rejection was dealing with patterns that are far away from the clusters. In this paper, we extend the idea of NCM for nonlinear-shaped data clustering by incorporating the kernel function into NCM. The new clustering algorithm is called Kernel Neutrosophic c-Means (KNCM), and has been evaluated through extensive experiments. Nonlinear-shaped toy datasets, real datasets and images were used in the experiments for demonstrating the efficiency of the proposed method. A comparison between Kernel FCM (KFCM) and KNCM was also accomplished in order to visualize the performance of both methods. According to the obtained results, the proposed KNCM produced better results than KFCM.
Author Guo, Yanhui
Şengür, Abdulkadir
Akbulut, Yaman
Polat, Kemal
Author_xml – sequence: 1
  givenname: Yaman
  surname: Akbulut
  fullname: Akbulut, Yaman
  organization: Firat University, Technology Faculty, Electrical and Electronics Engineering Dept., Elazig, Turkey
– sequence: 2
  givenname: Abdulkadir
  surname: Şengür
  fullname: Şengür, Abdulkadir
  organization: Firat University, Technology Faculty, Electrical and Electronics Engineering Dept., Elazig, Turkey
– sequence: 3
  givenname: Yanhui
  surname: Guo
  fullname: Guo, Yanhui
  organization: University of Illinois at Springfield, Department of Computer Science, Springfield, Illinois, USA
– sequence: 4
  givenname: Kemal
  surname: Polat
  fullname: Polat, Kemal
  email: kemal_polat2003@yahoo.com
  organization: Abant Izzet Baysal University, Engineering Faculty, Electrical and Electronics Engineering Dept., Bolu, Turkey
BookMark eNp9j8tOwzAURC0EEm3hB1jlA0iwnRsnRmxQxEt9sIG15ccNuCpJZadI_D2OyprVHY1mrubMyWk_9EjIFaMFo0zcbAsdB1vwpJNRUMpOyIw1Nc-laNhp0pVocpAgzsk8xm0KCMmbGblebtr1bbbE0OMu2-BhDEMc9p_eZjZfo-5j1u4OccTg-48LctbpXcTLv7sg748Pb-1zvnp9emnvV7ktAcYcTMW1scCBSyOgqYyoXEdZ7YCa2oDjrgFXU1bKEhCxM1LXkjKpNULHXbkg_PjXpjExYKf2wX_p8KMYVROv2qqJV028k5dwUunuWMK07NtjUNF67C06H9COyg3-v_ovAj9fFw
CitedBy_id crossref_primary_10_1016_j_asoc_2022_109519
crossref_primary_10_1007_s10462_018_9652_0
crossref_primary_10_1007_s11277_017_5147_6
crossref_primary_10_1007_s00521_022_07313_2
crossref_primary_10_3233_JIFS_190681
crossref_primary_10_1016_j_bspc_2021_102682
crossref_primary_10_1016_j_knosys_2020_106672
crossref_primary_10_1080_03772063_2023_2228754
crossref_primary_10_3390_math11081931
crossref_primary_10_3233_JIFS_212812
crossref_primary_10_1016_j_asoc_2017_04_071
crossref_primary_10_3233_JIFS_210863
crossref_primary_10_1155_2019_3821025
crossref_primary_10_1016_j_aej_2024_03_092
crossref_primary_10_1016_j_engappai_2019_103411
crossref_primary_10_1007_s00521_023_09115_6
crossref_primary_10_1007_s41066_024_00452_y
crossref_primary_10_1016_j_compind_2019_04_005
crossref_primary_10_1142_S0218126620502606
crossref_primary_10_1186_s12859_020_03775_0
Cites_doi 10.1016/j.patrec.2008.04.016
10.1016/S0031-3203(99)00110-7
10.1080/01969727308546046
10.1016/j.patrec.2009.04.008
10.1023/B:NEPL.0000011135.19145.1b
10.1109/91.227387
10.1109/TNN.2011.2147798
10.1016/j.patcog.2015.02.018
10.1016/S0019-9958(69)90591-9
10.1016/j.patcog.2007.08.014
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2016.10.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 724
ExternalDocumentID 10_1016_j_asoc_2016_10_001
S1568494616305117
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c344t-4b52abc42429b6485b65df017d40b7b4d2d84d7013934eeefb9a79019aae4f2d3
ISSN 1568-4946
IngestDate Thu Sep 26 18:20:19 EDT 2024
Fri Feb 23 02:24:51 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neutrosophic c-means
Kernel function
Fuzzy clustering
Data clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-4b52abc42429b6485b65df017d40b7b4d2d84d7013934eeefb9a79019aae4f2d3
OpenAccessLink https://zenodo.org/record/1041560/files/KNCMKernelNeutrosophic.pdf
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_asoc_2016_10_001
elsevier_sciencedirect_doi_10_1016_j_asoc_2016_10_001
PublicationCentury 2000
PublicationDate March 2017
2017-03-00
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: March 2017
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pal, Pal, Bezdek (bib0040) 1997
Zhang, Chen (bib0070) 2003; 18
Ménard, Demko, Loonis (bib0045) 2000; 33
Gustafson, Kessel (bib0025) 1979; 10
Ng, Jordan, Weiss (bib0075) 2002; 2
Masson, Denoeux (bib0055) 2009; 30
R.N. Dave, Clustering of relational data containing noise and outliers In: FUZZ’IEEE 98, vol. 2, pp. 1411–1416 (1998).
Ruspini (bib0010) 1969; 15
Smarandache (bib0060) 2003
Dunn (bib0015) 1974; 3
Guo, Sengur (bib0065) 2015; 48
Masson, Denoeux (bib0050) 2008; 41
Yang, Tsai (bib0085) 2008; 29
Bezdek (bib0020) 1987
Wang (bib0080) 2011; 22
Andenberg (bib0005) 1973
Krishnapuram, Keller (bib0035) 1993; 1
Wang (10.1016/j.asoc.2016.10.001_bib0080) 2011; 22
Pal (10.1016/j.asoc.2016.10.001_bib0040) 1997
Bezdek (10.1016/j.asoc.2016.10.001_bib0020) 1987
Masson (10.1016/j.asoc.2016.10.001_bib0050) 2008; 41
Yang (10.1016/j.asoc.2016.10.001_bib0085) 2008; 29
Masson (10.1016/j.asoc.2016.10.001_bib0055) 2009; 30
Ng (10.1016/j.asoc.2016.10.001_bib0075) 2002; 2
Guo (10.1016/j.asoc.2016.10.001_bib0065) 2015; 48
Krishnapuram (10.1016/j.asoc.2016.10.001_bib0035) 1993; 1
Ménard (10.1016/j.asoc.2016.10.001_bib0045) 2000; 33
Gustafson (10.1016/j.asoc.2016.10.001_bib0025) 1979; 10
Zhang (10.1016/j.asoc.2016.10.001_bib0070) 2003; 18
Smarandache (10.1016/j.asoc.2016.10.001_bib0060) 2003
10.1016/j.asoc.2016.10.001_bib0030
Ruspini (10.1016/j.asoc.2016.10.001_bib0010) 1969; 15
Dunn (10.1016/j.asoc.2016.10.001_bib0015) 1974; 3
Andenberg (10.1016/j.asoc.2016.10.001_bib0005) 1973
References_xml – year: 2003
  ident: bib0060
  article-title: A Unifying Field in Logics Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability
  contributor:
    fullname: Smarandache
– volume: 3
  start-page: 32
  year: 1974
  end-page: 57
  ident: bib0015
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybernet.
  contributor:
    fullname: Dunn
– volume: 48
  start-page: 2710
  year: 2015
  end-page: 2724
  ident: bib0065
  article-title: NCM: Neutrosophic c-means Clustering Algorithm
  publication-title: Pattern Recognit.
  contributor:
    fullname: Sengur
– start-page: 11
  year: 1997
  end-page: 21
  ident: bib0040
  article-title: A mixed c-means clustering model
  publication-title: Proceedings of the Sixth IEEE International Conference on Fuzzy Systems
  contributor:
    fullname: Bezdek
– volume: 2
  start-page: 849
  year: 2002
  end-page: 856
  ident: bib0075
  article-title: On spectral clustering: analysis and an algorithm
  publication-title: Adv Neural Inf. Process. Syst.
  contributor:
    fullname: Weiss
– volume: 10
  start-page: 761
  year: 1979
  end-page: 766
  ident: bib0025
  article-title: Fuzzy clustering with a fuzzy covariance matrix
  publication-title: Proceedings of IEEE CDC
  contributor:
    fullname: Kessel
– year: 1973
  ident: bib0005
  article-title: Cluster Analysis for Applications
  contributor:
    fullname: Andenberg
– volume: 41
  start-page: 1384
  year: 2008
  end-page: 1397
  ident: bib0050
  article-title: ECM: an evidential version of the fuzzy c-means algorithm
  publication-title: Pattern Recognit.
  contributor:
    fullname: Denoeux
– volume: 1
  start-page: 98
  year: 1993
  end-page: 110
  ident: bib0035
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  contributor:
    fullname: Keller
– volume: 29
  start-page: 1713
  year: 2008
  end-page: 1725
  ident: bib0085
  article-title: A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction
  publication-title: Pattern Recognit. Lett.
  contributor:
    fullname: Tsai
– volume: 33
  start-page: 1219
  year: 2000
  end-page: 1237
  ident: bib0045
  article-title: The fuzzy c
  publication-title: Pattern Recognit.
  contributor:
    fullname: Loonis
– volume: 30
  start-page: 1015
  year: 2009
  end-page: 1026
  ident: bib0055
  article-title: RECM: Relational Evidential c-means Algorithm
  publication-title: Pattern Recognit. Lett.
  contributor:
    fullname: Denoeux
– volume: 22
  start-page: 1149
  year: 2011
  end-page: 1161
  ident: bib0080
  article-title: Spectral clustering on multiple manifolds
  publication-title: IEEE Trans. Neural Networks
  contributor:
    fullname: Wang
– volume: 18
  start-page: 155
  year: 2003
  end-page: 162
  ident: bib0070
  article-title: Clustering incomplete data using kernel-based fuzzy c-means algorithm
  publication-title: Neural Process. Lett.
  contributor:
    fullname: Chen
– year: 1987
  ident: bib0020
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithms
  contributor:
    fullname: Bezdek
– volume: 15
  start-page: 22
  year: 1969
  end-page: 32
  ident: bib0010
  article-title: A new approach to clustering
  publication-title: Inf. Control
  contributor:
    fullname: Ruspini
– volume: 29
  start-page: 1713
  issue: 12
  year: 2008
  ident: 10.1016/j.asoc.2016.10.001_bib0085
  article-title: A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.04.016
  contributor:
    fullname: Yang
– volume: 33
  start-page: 1219
  year: 2000
  ident: 10.1016/j.asoc.2016.10.001_bib0045
  article-title: The fuzzy c+2 means: solving the ambiguity rejection in clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(99)00110-7
  contributor:
    fullname: Ménard
– volume: 3
  start-page: 32
  year: 1974
  ident: 10.1016/j.asoc.2016.10.001_bib0015
  article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
  publication-title: J. Cybernet.
  doi: 10.1080/01969727308546046
  contributor:
    fullname: Dunn
– year: 1987
  ident: 10.1016/j.asoc.2016.10.001_bib0020
  contributor:
    fullname: Bezdek
– volume: 10
  start-page: 761
  year: 1979
  ident: 10.1016/j.asoc.2016.10.001_bib0025
  article-title: Fuzzy clustering with a fuzzy covariance matrix
  contributor:
    fullname: Gustafson
– year: 2003
  ident: 10.1016/j.asoc.2016.10.001_bib0060
  contributor:
    fullname: Smarandache
– volume: 30
  start-page: 1015
  year: 2009
  ident: 10.1016/j.asoc.2016.10.001_bib0055
  article-title: RECM: Relational Evidential c-means Algorithm
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.04.008
  contributor:
    fullname: Masson
– volume: 18
  start-page: 155
  issue: 3
  year: 2003
  ident: 10.1016/j.asoc.2016.10.001_bib0070
  article-title: Clustering incomplete data using kernel-based fuzzy c-means algorithm
  publication-title: Neural Process. Lett.
  doi: 10.1023/B:NEPL.0000011135.19145.1b
  contributor:
    fullname: Zhang
– volume: 2
  start-page: 849
  year: 2002
  ident: 10.1016/j.asoc.2016.10.001_bib0075
  article-title: On spectral clustering: analysis and an algorithm
  publication-title: Adv Neural Inf. Process. Syst.
  contributor:
    fullname: Ng
– volume: 1
  start-page: 98
  issue: 2
  year: 1993
  ident: 10.1016/j.asoc.2016.10.001_bib0035
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.227387
  contributor:
    fullname: Krishnapuram
– volume: 22
  start-page: 1149
  issue: 7
  year: 2011
  ident: 10.1016/j.asoc.2016.10.001_bib0080
  article-title: Spectral clustering on multiple manifolds
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2011.2147798
  contributor:
    fullname: Wang
– year: 1973
  ident: 10.1016/j.asoc.2016.10.001_bib0005
  contributor:
    fullname: Andenberg
– volume: 48
  start-page: 2710
  issue: 8
  year: 2015
  ident: 10.1016/j.asoc.2016.10.001_bib0065
  article-title: NCM: Neutrosophic c-means Clustering Algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.02.018
  contributor:
    fullname: Guo
– volume: 15
  start-page: 22
  year: 1969
  ident: 10.1016/j.asoc.2016.10.001_bib0010
  article-title: A new approach to clustering
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(69)90591-9
  contributor:
    fullname: Ruspini
– start-page: 11
  year: 1997
  ident: 10.1016/j.asoc.2016.10.001_bib0040
  article-title: A mixed c-means clustering model
  contributor:
    fullname: Pal
– ident: 10.1016/j.asoc.2016.10.001_bib0030
– volume: 41
  start-page: 1384
  year: 2008
  ident: 10.1016/j.asoc.2016.10.001_bib0050
  article-title: ECM: an evidential version of the fuzzy c-means algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.08.014
  contributor:
    fullname: Masson
SSID ssj0016928
Score 2.3854365
Snippet The block diagram of the proposed Kernel-NCM approach. [Display omitted] •We proposed a new Kernel Neutrosophic c- Means (KNCM) algorithm for improving the NCM...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 714
SubjectTerms Data clustering
Fuzzy clustering
Kernel function
Neutrosophic c-means
Title KNCM: Kernel Neutrosophic c-Means Clustering
URI https://dx.doi.org/10.1016/j.asoc.2016.10.001
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZ4XHopLW1VoFQ5sKetESR-9kZDKh6CC1TiFtmxowJLQEv8_xnHToKgQqVSL9Gud511PKNvPs_OA6EtxWmtrKTYUGkwnL80FkorTComaCp24I13DRyc8dMLsV-QYnRlj2P_VdIwBrL2mbOvkPZwUxiA1yBzuILU4fpXcj8-zU_8Mf_Yzhs7AxBz7bzrVXBZTSt8YsE0TfOZ8_UReqvVF6GNhPQekLkLNXdt_w2vEdfawbo7yFY3o05NcjqRhQXIyLPJjzz0xtbGza4VmMshvMfdhpnNb3c5wDEcq9uQHHQTHyv6H8CmDQFYwSn2LDEm4CgTmMjoXbRhTPAUSxY6tPTgG8rXRvTkIZ80GmIekqufYXxwN1xtK1BfH5vHtrvwvN3Rog1xhmd-HX4ZwDoBfXb5IlpOAZEAEJf3DouLo-EPJya7NrzDumN-VQgFfPpLf-Ywj3jJ-Tv0Nh4okr2gCe_Rgm1W0UrfrCOJ2P0BffOK8T0JapE8VoskqkUyqsVH9OtncZ4f4NgqA1cZIS0mmqZKVwQIl9SMCKoZNTVIy5AdzTUxqRHEcM_3M2KtrbVUHKigVMqSOjXZJ7TU3Db2M0ponUmmtUlrwzxzEZWGzwVXlfHleuUamvYPX96FiihlHyp4VfqtKv1W-THYqjVE-_0pI6cLXK0Ecb4wb_0f522gN6OSfkFL7dzZTbR4b9zXKPIHpHZo8Q
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KNCM%3A+Kernel+Neutrosophic+c-Means+Clustering&rft.jtitle=Applied+soft+computing&rft.au=Akbulut%2C+Yaman&rft.au=%C5%9Eeng%C3%BCr%2C+Abdulkadir&rft.au=Guo%2C+Yanhui&rft.au=Polat%2C+Kemal&rft.date=2017-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=52&rft.spage=714&rft.epage=724&rft_id=info:doi/10.1016%2Fj.asoc.2016.10.001&rft.externalDocID=S1568494616305117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon