Critical points of inner functions, nonlinear partial differential equations, and an extension of Liouville's theorem

We establish an extension of Liouville's classical representation theorem for solutions of the partial differential equation (PDE) Δ u=4 e2u and combine this result with methods from nonlinear elliptic PDE to construct holomorphic maps with prescribed critical points and specified boundary beha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the London Mathematical Society Vol. 77; no. 1; pp. 183 - 202
Main Authors: Kraus, Daniela, Roth, Oliver
Format: Journal Article
Language:English
Published: Oxford University Press 01-02-2008
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We establish an extension of Liouville's classical representation theorem for solutions of the partial differential equation (PDE) Δ u=4 e2u and combine this result with methods from nonlinear elliptic PDE to construct holomorphic maps with prescribed critical points and specified boundary behaviour. For instance, we show that for every Blaschke sequence {zj} in the unit disk there is always a Blaschke product with {zj} as its set of critical points. Our work is closely related to the Berger--Nirenberg problem in differential geometry.
AbstractList We establish an extension of Liouville's classical representation theorem for solutions of the partial differential equation (PDE) Δ u=4 e2u and combine this result with methods from nonlinear elliptic PDE to construct holomorphic maps with prescribed critical points and specified boundary behaviour. For instance, we show that for every Blaschke sequence {zj} in the unit disk there is always a Blaschke product with {zj} as its set of critical points. Our work is closely related to the Berger--Nirenberg problem in differential geometry.
Abstract We establish an extension of Liouville's classical representation theorem for solutions of the partial differential equation (PDE) Δ u=4 e 2u and combine this result with methods from nonlinear elliptic PDE to construct holomorphic maps with prescribed critical points and specified boundary behaviour. For instance, we show that for every Blaschke sequence {z j } in the unit disk there is always a Blaschke product with {z j } as its set of critical points. Our work is closely related to the Berger--Nirenberg problem in differential geometry.
Author Kraus, Daniela
Roth, Oliver
Author_xml – sequence: 1
  givenname: Daniela
  surname: Kraus
  fullname: Kraus, Daniela
  email: roth@mathematik.uni-wuerzburg.de
  organization: Department of MathematicsUniversity of Würzburg97074 WürzburgGermany
– sequence: 2
  givenname: Oliver
  surname: Roth
  fullname: Roth, Oliver
  email: roth@mathematik.uni-wuerzburg.de
  organization: Department of MathematicsUniversity of Würzburg97074 WürzburgGermany
BookMark eNqFkMFOwzAMhiM0JLbBiRfoCQ5QljRpux7RgA1UhMRATFyirHFERpuWpIXt7enoxBEsWZatz7-tf4B6pjSA0DHBF4SQYLTKCzdayQIn4R7qExYlfhyHuIf6GAfMjwiOD9DAuRXGhBIc9FEzsbrWmci9qtSmdl6pPG0MWE81Jqt1ady5117JtQFhvUrYWrew1EqBBfPTwEcjdqQwsk0P1jUY1462cqkum0-d53DqvPoNSgvFIdpXIndwtKtD9Hxz_TSZ-enD9HZymfoZZYz6WYijcUCDjAWQqIxhgVVMszYEIVImRCqcLKmkgjJJ2RJoHMpEMiYCAYGM6BCddbqZLZ2zoHhldSHshhPMt47xrWO8c6ylSUd_6Rw2f6H8Lr2fYzKm7c5Jt1M21T_ifgdqV8P6FxX2nUdx-zefLV45m79MF1ePEWf0G2XikVQ
CitedBy_id crossref_primary_10_1007_s11856_010_0102_1
crossref_primary_10_1016_j_aim_2013_03_017
crossref_primary_10_1007_s11854_019_0064_0
crossref_primary_10_1007_s13324_017_0193_5
crossref_primary_10_24193_subbmath_2022_2_05
ContentType Journal Article
Copyright 2007 London Mathematical Society 2008
2008 London Mathematical Society
Copyright_xml – notice: 2007 London Mathematical Society 2008
– notice: 2008 London Mathematical Society
DBID BSCLL
AAYXX
CITATION
DOI 10.1112/jlms/jdm095
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-7750
EndPage 202
ExternalDocumentID 10_1112_jlms_jdm095
JLMS0183
10.1112/jlms/jdm095
ark_67375_HXZ_4SWGXDR6_4
Genre article
GroupedDBID --Z
-DZ
-~X
.2P
.I3
0R~
1OB
1OC
1TH
33P
4.4
5GY
5VS
6OB
6TJ
70D
AAHHS
AAIJN
AAJKP
AAMVS
AANLZ
AAOGV
AAPXW
AASGY
AASVR
AAUQX
AAXRX
AAYJJ
AAZKR
ABCUV
ABEFU
ABEJV
ABEUO
ABFSI
ABITZ
ABIXL
ABJNI
ABLJU
ABNKS
ABQLI
ABQTQ
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACAHQ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACQPF
ACUFI
ACXBN
ACXQS
ADBBV
ADEOM
ADEYI
ADHZD
ADKYN
ADMGS
ADOCK
ADOZA
ADRIX
ADXAS
ADZMN
ADZXQ
AECKG
AEEZP
AEGPL
AEIGN
AEJOX
AEPUE
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFIYH
AFKSM
AFPWT
AFZJQ
AGKEF
AGSYK
AHBTC
AHXPO
AI.
AIJHB
AITYG
AIURR
AIWBW
AJBDE
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALUQN
AMYDB
ASAOO
ASPBG
ATDFG
AUFTA
AVWKF
AXUDD
AZFZN
BFHJK
BMNLL
BMXJE
BQUQU
BSCLL
CAG
CHEAL
COF
CS3
CXTWN
CZ4
DCZOG
DFGAJ
DILTD
DRFUL
DRSTM
D~K
E.L
EBS
EE~
EJD
ESX
F9B
FEDTE
FSPIC
H13
H5~
HAR
HGLYW
HVGLF
HW0
H~9
IOX
J21
KOP
KSI
L7B
L98
LATKE
LEEKS
LOXES
LUTES
LYRES
M-Z
M49
MBTAY
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N9A
NGC
NHB
NU-
O0~
O9-
OHT
O~Y
P2P
P2W
PALCI
PB-
Q1.
Q5Y
RCA
RD5
RJQFR
ROL
ROX
ROZ
RW1
RXO
S10
SAMSI
SUPJJ
TCN
TJP
TN5
UPT
UQL
VH1
VOH
WH7
WIH
WIK
WOHZO
WXSBR
X7H
XJT
XKC
XOL
XSW
XXG
Y6R
YQT
YYP
ZCG
ZKB
ZY4
ZZTAW
~91
AETEA
F20
AAMNL
AAYXX
CITATION
ID FETCH-LOGICAL-c3443-c5068232c42e9fc40a0f73cccca11dd91df09b3d3a34d34be375d9d44a2ae2d63
IEDL.DBID 33P
ISSN 0024-6107
IngestDate Thu Nov 21 21:15:30 EST 2024
Sat Aug 24 00:58:38 EDT 2024
Wed Aug 28 03:24:35 EDT 2024
Wed Oct 30 09:50:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3443-c5068232c42e9fc40a0f73cccca11dd91df09b3d3a34d34be375d9d44a2ae2d63
Notes istex:109A42CBC603DFEBAB5CE7C5320FE4CAF00F06C3
ark:/67375/HXZ-4SWGXDR6-4
ArticleID:jdm095
2000 Mathematics Subject Classification 30D50, 35J65 (primary), 53A30, 30F45 (secondary).
2000
The first author was supported by an HWP scholarship. The second author received partial support from the German‐‐Israeli Foundation (grant G‐809‐234.6/2003).
Mathematics Subject Classification
30D50, 35J65 (primary), 53A30, 30F45 (secondary).
PageCount 20
ParticipantIDs crossref_primary_10_1112_jlms_jdm095
wiley_primary_10_1112_jlms_jdm095_JLMS0183
oup_primary_10_1112_jlms_jdm095
istex_primary_ark_67375_HXZ_4SWGXDR6_4
PublicationCentury 2000
PublicationDate February 2008
PublicationDateYYYYMMDD 2008-02-01
PublicationDate_xml – month: 02
  year: 2008
  text: February 2008
PublicationDecade 2000
PublicationTitle Journal of the London Mathematical Society
PublicationYear 2008
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
SSID ssj0013102
Score 1.8894291
Snippet We establish an extension of Liouville's classical representation theorem for solutions of the partial differential equation (PDE) Δ u=4 e2u and combine this...
Abstract We establish an extension of Liouville's classical representation theorem for solutions of the partial differential equation (PDE) Δ u=4 e 2u and...
SourceID crossref
wiley
oup
istex
SourceType Aggregation Database
Publisher
StartPage 183
Title Critical points of inner functions, nonlinear partial differential equations, and an extension of Liouville's theorem
URI https://api.istex.fr/ark:/67375/HXZ-4SWGXDR6-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1112%2Fjlms%2Fjdm095
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA4-LnrwLb7NQRTExWSTbZqT-KpFVMT6KF6WbJIFX21trfjznSS7VS-CuLCHhUkImcnky2y-GYQ2mAGUmsc8koJmEc_yJMqkBlvWAI5oYqw0jjtcb4iLZvXo2KXJ2Su5MCE_xCDg5laG99dugausqEJCXdLQx2cXi6g9mhdACeCD4aTgKRzs8usvAiVFtnAORyQiCn4etN91rXdD2x870qib3I-S7fYdr_oNpzb576FOoYkCa-L9YBzTaMi2ZtD4-SBRa28W9ctSB7jTfmi99XA7x74aF3YbnrfJHdwKY1Bd3HGGBsJlWRX_YV9DunCQVC0DL_aRdReGc92dPbT7745xuNXDgTb5ModuasfXh_WoqMQQacY5i3RCKlXAXprHVuaaE0VywTQ8ilJjJDU5kRkzTDFuGM8sE4mRhnMVKxubCptHIzBWu4CwFUJbAbhKSMktVTIHJ0OrFcuI0iTji2ij1EbaCQk30nBQiVM3j2mYxUW06TU1kFHdJ3dHTSRpvXmf8sbdSfPoqpJCf-ugyt-72vbK-00mPT07bxBwf0t_EV5GY-F6ibv9soJG3rp9u4qGe6a_5g11DY3uHzRvbz8Bdqvxsg
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYKHCgHKLSIZ_EBtVLFCu_au46PCAgpTVDVUDXiYnltr8QrCQlB_PzO2Ju0vSChrrSHlcYjyzO2P896viFknztAqVUmEiXTMhFllSelsuDLFsBRmjuvHOYOt7ryotc4OUWanFkWf-SHmAXccGaE9RonOAak61mOrKE3dxiMaN64e4AJc2RBFOCMmMTBv__5j5Cymi9cwCGJyTpDDxQcYvPD2PifPWkBh_d5mu_2N2INW05z5f87-44s13CTHkX_WCVvfH-NLHVmXK3j92QyrXZAh4Pr_uOYDioaCnJR3POCWx7QfuyEGdEh-hoITyurhA__EBnDQdL0Hbw0BNcxEofq2teDyRMmHX4e05g5ef-B_GyeXh63kroYQ2K5EDyxOSsaAL-syLyqrGCGVZJbeEyaOqdSVzFVcscNF46L0nOZO-WEMJnxmSv4OpmHvvoNQr2U1kuAVlIp4VOjKlhn0kbhOTOWlWKT7E_NoYeRc0PHs0qmcRx1HMVN8imYaiZjRrd4TU3mutW70qL766x38qPQoG8PbPmyqi_Bei_J6PN2p8tgBdx6jfAeWWxddtq6_fXi2zZ5G2-b4GWYHTL_OJr4XTI3dpOPwWt_Awu_9DA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA9VodQHbWtL_ajmQVqQLpfdZC-XJxHP61VPkV5LD19CNsmCX3fnnSf--Z1Jds_2RShd2IeFyRAyk-SX2cxvCNnlDlBqmYlEybRIRFHmSaEs-LIFcJTmziuHucPdvjwbtNpHSJOzX-fCRH6IecANZ0ZYr3GCj11ZTXIkDb26wVhE58rdAkpYIEsCoDiS53N-_vQbIWUVXbiAMxKTVYIeKGhg80Zs_NeWtISj-1inu_0JWMOO01n9776-JisV2KQH0TvekBd--JYsn86ZWqdrZFbXOqDj0eXwfkpHJQ3luCjueMEpv9Bh7IOZ0DF6GgjXdVXCh7-LfOEgaYYOXhpC6xiHQ3W9y9HsAVMOP09pzJu8fUd-do5-HHaTqhRDYrkQPLE5a7YAfFmReVVawQwrJbfwmDR1TqWuZKrgjhsuHBeF5zJ3yglhMuMz1-TvySL01X8g1EtpvQRgJZUSPjWqhFUmbTU9Z8ayQqyT3doaehwZN3Q8qWQax1HHUVwnn4Kl5jJmco2X1GSuu4MLLfq_vg7a35sa9O2AKZ9XtReM95yMPu6d9hmsfxv_IrxDXp63O7r37exkk7yKV03wJswWWbyfzPxHsjB1s-3gs78BK_by1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+points+of+inner+functions%2C+nonlinear+partial+differential+equations%2C+and+an+extension+of+Liouville%27s+theorem&rft.jtitle=Journal+of+the+London+Mathematical+Society&rft.au=Kraus%2C+Daniela&rft.au=Roth%2C+Oliver&rft.date=2008-02-01&rft.pub=Oxford+University+Press&rft.issn=0024-6107&rft.eissn=1469-7750&rft.volume=77&rft.issue=1&rft.spage=183&rft.epage=202&rft_id=info:doi/10.1112%2Fjlms%2Fjdm095&rft.externalDBID=10.1112%252Fjlms%252Fjdm095&rft.externalDocID=JLMS0183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-6107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-6107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-6107&client=summon