Critical points of inner functions, nonlinear partial differential equations, and an extension of Liouville's theorem
We establish an extension of Liouville's classical representation theorem for solutions of the partial differential equation (PDE) Δ u=4 e2u and combine this result with methods from nonlinear elliptic PDE to construct holomorphic maps with prescribed critical points and specified boundary beha...
Saved in:
Published in: | Journal of the London Mathematical Society Vol. 77; no. 1; pp. 183 - 202 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford University Press
01-02-2008
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We establish an extension of Liouville's classical representation theorem for solutions of the partial differential equation (PDE) Δ u=4 e2u and combine this result with methods from nonlinear elliptic PDE to construct holomorphic maps with prescribed critical points and specified boundary behaviour. For instance, we show that for every Blaschke sequence {zj} in the unit disk there is always a Blaschke product with {zj} as its set of critical points. Our work is closely related to the Berger--Nirenberg problem in differential geometry. |
---|---|
AbstractList | We establish an extension of Liouville's classical representation theorem for solutions of the partial differential equation (PDE) Δ u=4 e2u and combine this result with methods from nonlinear elliptic PDE to construct holomorphic maps with prescribed critical points and specified boundary behaviour. For instance, we show that for every Blaschke sequence {zj} in the unit disk there is always a Blaschke product with {zj} as its set of critical points. Our work is closely related to the Berger--Nirenberg problem in differential geometry. Abstract We establish an extension of Liouville's classical representation theorem for solutions of the partial differential equation (PDE) Δ u=4 e 2u and combine this result with methods from nonlinear elliptic PDE to construct holomorphic maps with prescribed critical points and specified boundary behaviour. For instance, we show that for every Blaschke sequence {z j } in the unit disk there is always a Blaschke product with {z j } as its set of critical points. Our work is closely related to the Berger--Nirenberg problem in differential geometry. |
Author | Kraus, Daniela Roth, Oliver |
Author_xml | – sequence: 1 givenname: Daniela surname: Kraus fullname: Kraus, Daniela email: roth@mathematik.uni-wuerzburg.de organization: Department of MathematicsUniversity of Würzburg97074 WürzburgGermany – sequence: 2 givenname: Oliver surname: Roth fullname: Roth, Oliver email: roth@mathematik.uni-wuerzburg.de organization: Department of MathematicsUniversity of Würzburg97074 WürzburgGermany |
BookMark | eNqFkMFOwzAMhiM0JLbBiRfoCQ5QljRpux7RgA1UhMRATFyirHFERpuWpIXt7enoxBEsWZatz7-tf4B6pjSA0DHBF4SQYLTKCzdayQIn4R7qExYlfhyHuIf6GAfMjwiOD9DAuRXGhBIc9FEzsbrWmci9qtSmdl6pPG0MWE81Jqt1ady5117JtQFhvUrYWrew1EqBBfPTwEcjdqQwsk0P1jUY1462cqkum0-d53DqvPoNSgvFIdpXIndwtKtD9Hxz_TSZ-enD9HZymfoZZYz6WYijcUCDjAWQqIxhgVVMszYEIVImRCqcLKmkgjJJ2RJoHMpEMiYCAYGM6BCddbqZLZ2zoHhldSHshhPMt47xrWO8c6ylSUd_6Rw2f6H8Lr2fYzKm7c5Jt1M21T_ifgdqV8P6FxX2nUdx-zefLV45m79MF1ePEWf0G2XikVQ |
CitedBy_id | crossref_primary_10_1007_s11856_010_0102_1 crossref_primary_10_1016_j_aim_2013_03_017 crossref_primary_10_1007_s11854_019_0064_0 crossref_primary_10_1007_s13324_017_0193_5 crossref_primary_10_24193_subbmath_2022_2_05 |
ContentType | Journal Article |
Copyright | 2007 London Mathematical Society 2008 2008 London Mathematical Society |
Copyright_xml | – notice: 2007 London Mathematical Society 2008 – notice: 2008 London Mathematical Society |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1112/jlms/jdm095 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1469-7750 |
EndPage | 202 |
ExternalDocumentID | 10_1112_jlms_jdm095 JLMS0183 10.1112/jlms/jdm095 ark_67375_HXZ_4SWGXDR6_4 |
Genre | article |
GroupedDBID | --Z -DZ -~X .2P .I3 0R~ 1OB 1OC 1TH 33P 4.4 5GY 5VS 6OB 6TJ 70D AAHHS AAIJN AAJKP AAMVS AANLZ AAOGV AAPXW AASGY AASVR AAUQX AAXRX AAYJJ AAZKR ABCUV ABEFU ABEJV ABEUO ABFSI ABITZ ABIXL ABJNI ABLJU ABNKS ABQLI ABQTQ ABSAR ABSMQ ABTAH ABXVV ABZBJ ACAHQ ACCFJ ACCZN ACGFS ACNCT ACPOU ACQPF ACUFI ACXBN ACXQS ADBBV ADEOM ADEYI ADHZD ADKYN ADMGS ADOCK ADOZA ADRIX ADXAS ADZMN ADZXQ AECKG AEEZP AEGPL AEIGN AEJOX AEPUE AEQDE AEUYR AFBPY AFFPM AFGKR AFIYH AFKSM AFPWT AFZJQ AGKEF AGSYK AHBTC AHXPO AI. AIJHB AITYG AIURR AIWBW AJBDE AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALUQN AMYDB ASAOO ASPBG ATDFG AUFTA AVWKF AXUDD AZFZN BFHJK BMNLL BMXJE BQUQU BSCLL CAG CHEAL COF CS3 CXTWN CZ4 DCZOG DFGAJ DILTD DRFUL DRSTM D~K E.L EBS EE~ EJD ESX F9B FEDTE FSPIC H13 H5~ HAR HGLYW HVGLF HW0 H~9 IOX J21 KOP KSI L7B L98 LATKE LEEKS LOXES LUTES LYRES M-Z M49 MBTAY MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N9A NGC NHB NU- O0~ O9- OHT O~Y P2P P2W PALCI PB- Q1. Q5Y RCA RD5 RJQFR ROL ROX ROZ RW1 RXO S10 SAMSI SUPJJ TCN TJP TN5 UPT UQL VH1 VOH WH7 WIH WIK WOHZO WXSBR X7H XJT XKC XOL XSW XXG Y6R YQT YYP ZCG ZKB ZY4 ZZTAW ~91 AETEA F20 AAMNL AAYXX CITATION |
ID | FETCH-LOGICAL-c3443-c5068232c42e9fc40a0f73cccca11dd91df09b3d3a34d34be375d9d44a2ae2d63 |
IEDL.DBID | 33P |
ISSN | 0024-6107 |
IngestDate | Thu Nov 21 21:15:30 EST 2024 Sat Aug 24 00:58:38 EDT 2024 Wed Aug 28 03:24:35 EDT 2024 Wed Oct 30 09:50:54 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3443-c5068232c42e9fc40a0f73cccca11dd91df09b3d3a34d34be375d9d44a2ae2d63 |
Notes | istex:109A42CBC603DFEBAB5CE7C5320FE4CAF00F06C3 ark:/67375/HXZ-4SWGXDR6-4 ArticleID:jdm095 2000 Mathematics Subject Classification 30D50, 35J65 (primary), 53A30, 30F45 (secondary). 2000 The first author was supported by an HWP scholarship. The second author received partial support from the German‐‐Israeli Foundation (grant G‐809‐234.6/2003). Mathematics Subject Classification 30D50, 35J65 (primary), 53A30, 30F45 (secondary). |
PageCount | 20 |
ParticipantIDs | crossref_primary_10_1112_jlms_jdm095 wiley_primary_10_1112_jlms_jdm095_JLMS0183 oup_primary_10_1112_jlms_jdm095 istex_primary_ark_67375_HXZ_4SWGXDR6_4 |
PublicationCentury | 2000 |
PublicationDate | February 2008 |
PublicationDateYYYYMMDD | 2008-02-01 |
PublicationDate_xml | – month: 02 year: 2008 text: February 2008 |
PublicationDecade | 2000 |
PublicationTitle | Journal of the London Mathematical Society |
PublicationYear | 2008 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
SSID | ssj0013102 |
Score | 1.8894291 |
Snippet | We establish an extension of Liouville's classical representation theorem for solutions of the partial differential equation (PDE) Δ u=4 e2u and combine this... Abstract We establish an extension of Liouville's classical representation theorem for solutions of the partial differential equation (PDE) Δ u=4 e 2u and... |
SourceID | crossref wiley oup istex |
SourceType | Aggregation Database Publisher |
StartPage | 183 |
Title | Critical points of inner functions, nonlinear partial differential equations, and an extension of Liouville's theorem |
URI | https://api.istex.fr/ark:/67375/HXZ-4SWGXDR6-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1112%2Fjlms%2Fjdm095 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA4-LnrwLb7NQRTExWSTbZqT-KpFVMT6KF6WbJIFX21trfjznSS7VS-CuLCHhUkImcnky2y-GYQ2mAGUmsc8koJmEc_yJMqkBlvWAI5oYqw0jjtcb4iLZvXo2KXJ2Su5MCE_xCDg5laG99dugausqEJCXdLQx2cXi6g9mhdACeCD4aTgKRzs8usvAiVFtnAORyQiCn4etN91rXdD2x870qib3I-S7fYdr_oNpzb576FOoYkCa-L9YBzTaMi2ZtD4-SBRa28W9ctSB7jTfmi99XA7x74aF3YbnrfJHdwKY1Bd3HGGBsJlWRX_YV9DunCQVC0DL_aRdReGc92dPbT7745xuNXDgTb5ModuasfXh_WoqMQQacY5i3RCKlXAXprHVuaaE0VywTQ8ilJjJDU5kRkzTDFuGM8sE4mRhnMVKxubCptHIzBWu4CwFUJbAbhKSMktVTIHJ0OrFcuI0iTji2ij1EbaCQk30nBQiVM3j2mYxUW06TU1kFHdJ3dHTSRpvXmf8sbdSfPoqpJCf-ugyt-72vbK-00mPT07bxBwf0t_EV5GY-F6ibv9soJG3rp9u4qGe6a_5g11DY3uHzRvbz8Bdqvxsg |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYKHCgHKLSIZ_EBtVLFCu_au46PCAgpTVDVUDXiYnltr8QrCQlB_PzO2Ju0vSChrrSHlcYjyzO2P896viFknztAqVUmEiXTMhFllSelsuDLFsBRmjuvHOYOt7ryotc4OUWanFkWf-SHmAXccGaE9RonOAak61mOrKE3dxiMaN64e4AJc2RBFOCMmMTBv__5j5Cymi9cwCGJyTpDDxQcYvPD2PifPWkBh_d5mu_2N2INW05z5f87-44s13CTHkX_WCVvfH-NLHVmXK3j92QyrXZAh4Pr_uOYDioaCnJR3POCWx7QfuyEGdEh-hoITyurhA__EBnDQdL0Hbw0BNcxEofq2teDyRMmHX4e05g5ef-B_GyeXh63kroYQ2K5EDyxOSsaAL-syLyqrGCGVZJbeEyaOqdSVzFVcscNF46L0nOZO-WEMJnxmSv4OpmHvvoNQr2U1kuAVlIp4VOjKlhn0kbhOTOWlWKT7E_NoYeRc0PHs0qmcRx1HMVN8imYaiZjRrd4TU3mutW70qL766x38qPQoG8PbPmyqi_Bei_J6PN2p8tgBdx6jfAeWWxddtq6_fXi2zZ5G2-b4GWYHTL_OJr4XTI3dpOPwWt_Awu_9DA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA9VodQHbWtL_ajmQVqQLpfdZC-XJxHP61VPkV5LD19CNsmCX3fnnSf--Z1Jds_2RShd2IeFyRAyk-SX2cxvCNnlDlBqmYlEybRIRFHmSaEs-LIFcJTmziuHucPdvjwbtNpHSJOzX-fCRH6IecANZ0ZYr3GCj11ZTXIkDb26wVhE58rdAkpYIEsCoDiS53N-_vQbIWUVXbiAMxKTVYIeKGhg80Zs_NeWtISj-1inu_0JWMOO01n9776-JisV2KQH0TvekBd--JYsn86ZWqdrZFbXOqDj0eXwfkpHJQ3luCjueMEpv9Bh7IOZ0DF6GgjXdVXCh7-LfOEgaYYOXhpC6xiHQ3W9y9HsAVMOP09pzJu8fUd-do5-HHaTqhRDYrkQPLE5a7YAfFmReVVawQwrJbfwmDR1TqWuZKrgjhsuHBeF5zJ3yglhMuMz1-TvySL01X8g1EtpvQRgJZUSPjWqhFUmbTU9Z8ayQqyT3doaehwZN3Q8qWQax1HHUVwnn4Kl5jJmco2X1GSuu4MLLfq_vg7a35sa9O2AKZ9XtReM95yMPu6d9hmsfxv_IrxDXp63O7r37exkk7yKV03wJswWWbyfzPxHsjB1s-3gs78BK_by1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+points+of+inner+functions%2C+nonlinear+partial+differential+equations%2C+and+an+extension+of+Liouville%27s+theorem&rft.jtitle=Journal+of+the+London+Mathematical+Society&rft.au=Kraus%2C+Daniela&rft.au=Roth%2C+Oliver&rft.date=2008-02-01&rft.pub=Oxford+University+Press&rft.issn=0024-6107&rft.eissn=1469-7750&rft.volume=77&rft.issue=1&rft.spage=183&rft.epage=202&rft_id=info:doi/10.1112%2Fjlms%2Fjdm095&rft.externalDBID=10.1112%252Fjlms%252Fjdm095&rft.externalDocID=JLMS0183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-6107&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-6107&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-6107&client=summon |