Single W18O49 nanowires: A multifunctional nanoplatform for computed tomography imaging and photothermal/ photodynamic/radiation synergistic cancer therapy

Combination therapy is a promising cancer treatment strategy that is usually based on the utilization of complicated nanostructures with multiple components functioning as photo-thermal energy transducers, photo-sensitizers, or dose intensifiers for phototherma! therapy (PTT), photodynamic therapy (...

Full description

Saved in:
Bibliographic Details
Published in:Nano research Vol. 8; no. 11; pp. 3580 - 3590
Main Authors: Qiu, Jianjian, Xiao, Qingfeng, Zheng, Xiangpeng, Zhang, Libo, Xing, Huaiyong, Ni, Dalong, Liu, Yanyan, Zhang, Shengjian, Ren, Qingguo, Hua, Yanqing, Zhao, Kuaile, Bu, Wenbo
Format: Journal Article
Language:English
Published: Beijing Tsinghua University Press 01-11-2015
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Combination therapy is a promising cancer treatment strategy that is usually based on the utilization of complicated nanostructures with multiple components functioning as photo-thermal energy transducers, photo-sensitizers, or dose intensifiers for phototherma! therapy (PTT), photodynamic therapy (PDT), or radiation therapy (RT). In this study, ultrathin tungsten oxide nanowires (W18O49) were synthesized using a solvothermal approach and examined as a multifunctional theranostic nanoplatform. In vitro and in vivo analyses demonstrated that these nanowires could induce extensive heat- and singlet oxygen-mediated damage to cancer cells under 980 nm near infrared (NIR)-laser excitation. They were also shown to function as radiation dose intensifying agents that enhance irradiative energy deposition locally and selectively during radiation therapy. Compared to NIR-induced PTT/PDT and RT alone, W18O49 - based synergistic tri-modal therapy eradicated xenograft tumors and no recurrence was observed within a 9-month follow up. Moreover, the strong X-ray attenuation ability of the tungsten element (Z = 74, 4.438 cm^2·g^-1, 100 KeV) qualified these nanowires as excellent contrast agents in X-ray-based imaging, such as diagnostic computed tomography (CT) and cone-beam CT for image-guided radiation therapy. Toxicity studies demonstrated minimal adverse effects on the hematologic system and major organs of mice within one month. In conclusion, these nanowires have shown significant potential for cancer therapy with inherent image guidance and synergistic effects from phototherapy and radiation therapy, which warrants further investigation.
Bibliography:11-5974/O4
photodynamic therapy, photothermal therapy, radiation therapy, radiosensitization, image guidance, synergistic therapy
Combination therapy is a promising cancer treatment strategy that is usually based on the utilization of complicated nanostructures with multiple components functioning as photo-thermal energy transducers, photo-sensitizers, or dose intensifiers for phototherma! therapy (PTT), photodynamic therapy (PDT), or radiation therapy (RT). In this study, ultrathin tungsten oxide nanowires (W18O49) were synthesized using a solvothermal approach and examined as a multifunctional theranostic nanoplatform. In vitro and in vivo analyses demonstrated that these nanowires could induce extensive heat- and singlet oxygen-mediated damage to cancer cells under 980 nm near infrared (NIR)-laser excitation. They were also shown to function as radiation dose intensifying agents that enhance irradiative energy deposition locally and selectively during radiation therapy. Compared to NIR-induced PTT/PDT and RT alone, W18O49 - based synergistic tri-modal therapy eradicated xenograft tumors and no recurrence was observed within a 9-month follow up. Moreover, the strong X-ray attenuation ability of the tungsten element (Z = 74, 4.438 cm^2·g^-1, 100 KeV) qualified these nanowires as excellent contrast agents in X-ray-based imaging, such as diagnostic computed tomography (CT) and cone-beam CT for image-guided radiation therapy. Toxicity studies demonstrated minimal adverse effects on the hematologic system and major organs of mice within one month. In conclusion, these nanowires have shown significant potential for cancer therapy with inherent image guidance and synergistic effects from phototherapy and radiation therapy, which warrants further investigation.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-015-0858-z