Design and Analysis of XOR Logic Gate Based on Two-Photon Absorption
Two-photon absorption with high intensity pump beam occurs in a SOA depends on fast phase change of a weak probe signal. This work analysed optical XOR logic function using two-photon absorption induced fast phase change. A rate equation for SOA and both input data signals A and B with high intensit...
Saved in:
Published in: | MATEC Web of Conferences Vol. 78; p. 1108 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article Conference Proceeding |
Language: | English |
Published: |
Les Ulis
EDP Sciences
01-01-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two-photon absorption with high intensity pump beam occurs in a SOA depends on fast phase change of a weak probe signal. This work analysed optical XOR logic function using two-photon absorption induced fast phase change. A rate equation for SOA and both input data signals A and B with high intensity, configured in the form of MZI has also been proved. The model shows that XOR operation at 10 Gb/s with good signal to noise ratio is obtained with high input intensities. The result on the generation of XOR indicates that operations on 10 Gb/s with a high signal to noise ratio can easily be implemented. The average input power into the SOA is 20 dbm corresponding to the peak power of 5.5 dBm at 10 Gb/s when the width of the input pulse 3.6 ps. The short narrow pulse width is utilised in the study for stronger effect of two-photon absorption. |
---|---|
ISSN: | 2261-236X 2274-7214 2261-236X |
DOI: | 10.1051/matecconf/20167801108 |