Metal-Organic Frameworks as a Platform for CO2 Capture and Chemical Processes: Adsorption, Membrane Separation, Catalytic-Conversion, and Electrochemical Reduction of CO2
The continuous rise in the atmospheric concentration of carbon dioxide gas (CO2) is of significant global concern. Several methodologies and technologies are proposed and applied by the industries to mitigate the emissions of CO2 into the atmosphere. This review article offers a large number of stud...
Saved in:
Published in: | Catalysts Vol. 10; no. 11; p. 1293 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
MDPI AG
01-11-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The continuous rise in the atmospheric concentration of carbon dioxide gas (CO2) is of significant global concern. Several methodologies and technologies are proposed and applied by the industries to mitigate the emissions of CO2 into the atmosphere. This review article offers a large number of studies that aim to capture, convert, or reduce CO2 by using a superb porous class of materials (metal-organic frameworks, MOFs), aiming to tackle this worldwide issue. MOFs possess several remarkable features ranging from high surface area and porosity to functionality and morphology. As a result of these unique features, MOFs were selected as the main class of porous material in this review article. MOFs act as an ideal candidate for the CO2 capture process. The main approaches for capturing CO2 are pre-combustion capture, post-combustion capture, and oxy-fuel combustion capture. The applications of MOFs in the carbon capture processes were extensively overviewed. In addition, the applications of MOFs in the adsorption, membrane separation, catalytic conversion, and electrochemical reduction processes of CO2 were also studied in order to provide new practical and efficient techniques for CO2 mitigation. |
---|---|
AbstractList | The continuous rise in the atmospheric concentration of carbon dioxide gas (CO2) is of significant global concern. Several methodologies and technologies are proposed and applied by the industries to mitigate the emissions of CO2 into the atmosphere. This review article offers a large number of studies that aim to capture, convert, or reduce CO2 by using a superb porous class of materials (metal-organic frameworks, MOFs), aiming to tackle this worldwide issue. MOFs possess several remarkable features ranging from high surface area and porosity to functionality and morphology. As a result of these unique features, MOFs were selected as the main class of porous material in this review article. MOFs act as an ideal candidate for the CO2 capture process. The main approaches for capturing CO2 are pre-combustion capture, post-combustion capture, and oxy-fuel combustion capture. The applications of MOFs in the carbon capture processes were extensively overviewed. In addition, the applications of MOFs in the adsorption, membrane separation, catalytic conversion, and electrochemical reduction processes of CO2 were also studied in order to provide new practical and efficient techniques for CO2 mitigation. |
Author | Fares AlMomani Salma Ehab Mohamed Elhenawy Majeda Khraisheh Gavin Walker |
Author_xml | – sequence: 1 fullname: Salma Ehab Mohamed Elhenawy organization: Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar – sequence: 2 fullname: Majeda Khraisheh organization: Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar – sequence: 3 fullname: Fares AlMomani organization: Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar – sequence: 4 fullname: Gavin Walker organization: Bernal Institute, Department of Chemical Sciences, University of Limerick, V94 T9PX Limerick, Ireland |
BookMark | eNo1j9tOwzAMhiMEEqddcp8HoJBD2zXcoWocJNAQh-vKdZzR0TZT0oH2Sjwl3QDLsuVf9mf7mO33vifGzqS40NqIS4QBWimklMroPXakxFQnqU7TQzaJcSlGM1IXMjti34809ibzsIC-QX4ToKMvHz4ih9H5UwuD86HjY-DlXPESVsM6EIfe8vKdugah5U_BI8VI8Ypf2-jDamh8f84fqasD9MRfaAUBfsVye9tmaDApff9JIe7ULW7WEg4j6Z_6THaN2yHu3Xb3KTtw0Eaa_OUT9nYzey3vkof57X15_ZCgTtWQaKty5VJnXZ1ZRNSFndbGQVbonKQtENBMKVOFGctcyrpWWWGFsyJHpTLUJ-z-l2s9LKtVaDoIm8pDU-0EHxYVhPGBlipRkMtSo1MjVUoGa5MrUwusSYC201z_ALySfzM |
CitedBy_id | crossref_primary_10_1007_s43153_023_00378_z crossref_primary_10_1016_j_rineng_2024_102306 crossref_primary_10_1016_j_micromeso_2023_112782 crossref_primary_10_3390_catal11050648 crossref_primary_10_1038_s41598_022_18780_x crossref_primary_10_1016_j_mtsust_2023_100483 crossref_primary_10_1038_s41586_021_03900_w crossref_primary_10_1021_acsami_3c05495 crossref_primary_10_1021_acs_iecr_2c00303 crossref_primary_10_1039_D3CS00759F crossref_primary_10_1016_j_ccr_2022_214853 crossref_primary_10_1021_acs_inorgchem_2c00544 crossref_primary_10_3389_fchem_2023_1100210 crossref_primary_10_1007_s12046_023_02080_9 crossref_primary_10_1038_s41598_023_44076_9 crossref_primary_10_1016_j_fuel_2022_123904 crossref_primary_10_1016_j_molliq_2022_119840 crossref_primary_10_3390_catal12121582 crossref_primary_10_1016_j_jaap_2023_106139 crossref_primary_10_3390_en16062834 crossref_primary_10_1016_j_fuel_2024_132103 crossref_primary_10_1016_j_susmat_2023_e00717 crossref_primary_10_3390_ma15186356 crossref_primary_10_3390_nano13192637 crossref_primary_10_1002_aoc_6753 crossref_primary_10_1016_j_fuel_2023_128101 crossref_primary_10_1016_j_jiec_2023_06_014 crossref_primary_10_1038_s41467_022_34139_2 crossref_primary_10_1016_j_scca_2022_100007 crossref_primary_10_1021_acs_jced_2c00222 crossref_primary_10_1016_j_spc_2022_04_004 crossref_primary_10_1016_j_fuel_2023_128669 crossref_primary_10_1016_j_fuel_2023_127776 crossref_primary_10_1002_ceat_202300297 crossref_primary_10_1016_j_jece_2021_106869 crossref_primary_10_1021_acs_energyfuels_3c02377 crossref_primary_10_1016_j_ceja_2022_100320 crossref_primary_10_1016_j_est_2023_107901 crossref_primary_10_1021_acs_energyfuels_2c02585 crossref_primary_10_1016_j_jiec_2022_05_023 crossref_primary_10_1021_acsami_2c07124 crossref_primary_10_1002_adma_202201547 crossref_primary_10_1021_acs_jpclett_3c00049 crossref_primary_10_1016_j_scitotenv_2023_163913 crossref_primary_10_1016_j_jmgm_2022_108124 crossref_primary_10_1016_j_jece_2024_113404 crossref_primary_10_1016_j_jece_2022_108930 crossref_primary_10_54097_hset_v73i_12838 crossref_primary_10_1016_j_seppur_2023_125456 crossref_primary_10_1016_j_jelechem_2023_117417 crossref_primary_10_3389_fchem_2021_716745 crossref_primary_10_1149_1945_7111_aca830 crossref_primary_10_1016_j_apsusc_2023_156664 crossref_primary_10_1016_j_ijbiomac_2023_125344 crossref_primary_10_1016_j_jece_2023_111393 crossref_primary_10_1080_15435075_2023_2281330 crossref_primary_10_1016_j_jcou_2021_101715 crossref_primary_10_1016_j_jssc_2022_123363 crossref_primary_10_1016_j_fuproc_2023_107905 crossref_primary_10_1039_D2CP00837H crossref_primary_10_1021_acs_energyfuels_4c00277 crossref_primary_10_1016_j_rechem_2023_101099 crossref_primary_10_1016_j_ijhydene_2023_11_359 crossref_primary_10_1016_j_cej_2022_137311 crossref_primary_10_1016_j_fuel_2022_127056 crossref_primary_10_1016_j_rechem_2023_101137 crossref_primary_10_1016_j_chempr_2023_03_003 crossref_primary_10_3390_min12030349 crossref_primary_10_1002_chem_202203620 crossref_primary_10_3390_pr10112368 crossref_primary_10_1039_D3RA01588B crossref_primary_10_1016_j_jorganchem_2023_122712 crossref_primary_10_1016_j_cattod_2022_04_021 |
ContentType | Journal Article |
DBID | DOA |
DOI | 10.3390/catal10111293 |
DatabaseName | Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2073-4344 |
ExternalDocumentID | oai_doaj_org_article_08ef549349124e9cb9629b0cbe0a3d76 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ ABDBF ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU D1I ESX GROUPED_DOAJ HCIFZ IAO KB. KQ8 MODMG M~E OK1 PDBOC PIMPY PROAC RIG |
ID | FETCH-LOGICAL-c342t-3d262f4fdfb5dccc38d7b9fa5836e1d8cac97e52896e1611bb258d0fd06c225c3 |
IEDL.DBID | DOA |
IngestDate | Mon Oct 07 19:33:40 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-3d262f4fdfb5dccc38d7b9fa5836e1d8cac97e52896e1611bb258d0fd06c225c3 |
OpenAccessLink | https://doaj.org/article/08ef549349124e9cb9629b0cbe0a3d76 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_08ef549349124e9cb9629b0cbe0a3d76 |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Catalysts |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
SSID | ssj0000913815 |
Score | 2.54919 |
Snippet | The continuous rise in the atmospheric concentration of carbon dioxide gas (CO2) is of significant global concern. Several methodologies and technologies are... |
SourceID | doaj |
SourceType | Open Website |
StartPage | 1293 |
SubjectTerms | CO2 adsorption gas membrane separation metal organic frame works pre combustion |
Title | Metal-Organic Frameworks as a Platform for CO2 Capture and Chemical Processes: Adsorption, Membrane Separation, Catalytic-Conversion, and Electrochemical Reduction of CO2 |
URI | https://doaj.org/article/08ef549349124e9cb9629b0cbe0a3d76 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagCyyIp3jLA2Mtkjjxg62EVl0KiILEVvmVCdKqaQf-Er-Ss52gbixIUaRY8dm6S8539t13CN1wnhphdE6UE5rkDGw4qZkkVgmunbCJtD5ReDzlj-_iYehhcn5LffmYsAgPHBl3mwhXgQ9DcwkrkZNGS5ZJnRjtEkUtj2DbCdtwpoIOliksRUUE1aTg18dM8NRXVs_8IfMGQH9YSUb7aK81AfEgDn2Atlx9iHbKrvLaEfqeOKBCYpqkwaMufqrBCi78_KFW3tTEcMPlU4ZLtfDnAFjVFncAALjNAHDNHR7YZr4MqqGPJ-4T_OPa4amLqN--sfSz_oLpkNIHoYcdtH4gN4xVckxH9cUjvfpOeF75sY_R22j4Wo5JW1OBGJpnK0JtxrIqr2ylC2uMocJyLStVCMpcaoVRRnJXgBsGjyxNtc4KkFhlE2bg1zf0BPXqee1OERYFdAQVoIC_uWVKwptauYpxQy0txBm690yeLSJsxswDWYcGEO-sFe_sL_Ge_weRC7SbeTc5pBBeot5quXZXaLux6-vw2fwAZaDLBg |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-Organic+Frameworks+as+a+Platform+for+CO2+Capture+and+Chemical+Processes%3A+Adsorption%2C+Membrane+Separation%2C+Catalytic-Conversion%2C+and+Electrochemical+Reduction+of+CO2&rft.jtitle=Catalysts&rft.au=Salma+Ehab+Mohamed+Elhenawy&rft.au=Majeda+Khraisheh&rft.au=Fares+AlMomani&rft.au=Gavin+Walker&rft.date=2020-11-01&rft.pub=MDPI+AG&rft.eissn=2073-4344&rft.volume=10&rft.issue=11&rft.spage=1293&rft_id=info:doi/10.3390%2Fcatal10111293&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_08ef549349124e9cb9629b0cbe0a3d76 |