Effects of air blower and pump failures on the performance of A2O processes for wastewater treatment

The unexpected failure of equipment such as pumps and fans in wastewater treatment plants can reduce wastewater treatment efficiency, leading to direct leakage of untreated wastewater into the environment. It is hence important to predict the possible consequences of equipment failure to minimize th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental management Vol. 344; p. 118380
Main Authors: Pyo, Minsu, Kim, Dongyeon, Lee, Eui-Jong, Kim, Hyungsoo, Lee, Kang Hoon
Format: Journal Article
Language:English
Published: Elsevier Ltd 15-10-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The unexpected failure of equipment such as pumps and fans in wastewater treatment plants can reduce wastewater treatment efficiency, leading to direct leakage of untreated wastewater into the environment. It is hence important to predict the possible consequences of equipment failure to minimize the leakage of harmful substances. This study examines the impacts of equipment shutdown on the performance and recovery time of a laboratory-scale anaerobic/anoxic/aerobic system with regard to reactor conditions and water quality. Two days after the air blowers are stopped, the concentrations of the soluble chemical oxygen demand, NH4–N, and PO4–P in the effluent of the settling tank increase to 122 mg/L, 23.8 mg/L, and 46.6 mg/L, respectively. These concentrations return to their initial values after 12, 24, and 48 h of restarting the air blowers. The concentrations of PO4–P and NO3–N in the effluent increase to 58 mg/L and 20 mg/L, respectively, about 24 h after stopping the return activated sludge and mixed liquor recirculation pumps, owing to the release of phosphates in the settling tank and inhibition of denitrification. •The nutrient removal efficiency takes a longer time to return to normal.•Phosphates show the most serious deterioration during air blower and RAS pump failure.•A significant release of phosphate in the settling tank during RAS pump failure.•The immediate deterioration of sludge settleability due to DO concentration of 0 mg/L.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2023.118380