Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning
. Brain-machine interfaces (BMIs) seek to restore lost motor functions in individuals with neurological disorders by enabling them to control external devices directly with their thoughts. This work aims to improve robustness and decoding accuracy that currently become major challenges in the clinic...
Saved in:
Published in: | Journal of neural engineering Vol. 18; no. 2 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
England
01-04-2021
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | . Brain-machine interfaces (BMIs) seek to restore lost motor functions in individuals with neurological disorders by enabling them to control external devices directly with their thoughts. This work aims to improve robustness and decoding accuracy that currently become major challenges in the clinical translation of intracortical BMIs.
. We propose entire spiking activity (ESA)-an envelope of spiking activity that can be extracted by a simple, threshold-less, and automated technique-as the input signal. We couple ESA with deep learning-based decoding algorithm that uses quasi-recurrent neural network (QRNN) architecture. We evaluate comprehensively the performance of ESA-driven QRNN decoder for decoding hand kinematics from neural signals chronically recorded from the primary motor cortex area of three non-human primates performing different tasks.
. Our proposed method yields consistently higher decoding performance than any other combinations of the input signal and decoding algorithm previously reported across long-term recording sessions. It can sustain high decoding performance even when removing spikes from the raw signals, when using the different number of channels, and when using a smaller amount of training data.
. Overall results demonstrate exceptionally high decoding accuracy and chronic robustness, which is highly desirable given it is an unresolved challenge in BMIs. |
---|---|
AbstractList | . Brain-machine interfaces (BMIs) seek to restore lost motor functions in individuals with neurological disorders by enabling them to control external devices directly with their thoughts. This work aims to improve robustness and decoding accuracy that currently become major challenges in the clinical translation of intracortical BMIs.
. We propose entire spiking activity (ESA)-an envelope of spiking activity that can be extracted by a simple, threshold-less, and automated technique-as the input signal. We couple ESA with deep learning-based decoding algorithm that uses quasi-recurrent neural network (QRNN) architecture. We evaluate comprehensively the performance of ESA-driven QRNN decoder for decoding hand kinematics from neural signals chronically recorded from the primary motor cortex area of three non-human primates performing different tasks.
. Our proposed method yields consistently higher decoding performance than any other combinations of the input signal and decoding algorithm previously reported across long-term recording sessions. It can sustain high decoding performance even when removing spikes from the raw signals, when using the different number of channels, and when using a smaller amount of training data.
. Overall results demonstrate exceptionally high decoding accuracy and chronic robustness, which is highly desirable given it is an unresolved challenge in BMIs. |
Author | Constandinou, Timothy G Ahmadi, Nur Bouganis, Christos-Savvas |
Author_xml | – sequence: 1 givenname: Nur orcidid: 0000-0002-9902-9051 surname: Ahmadi fullname: Ahmadi, Nur organization: Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom – sequence: 2 givenname: Timothy G orcidid: 0000-0001-9778-1162 surname: Constandinou fullname: Constandinou, Timothy G organization: Care Research & Technology Centre, UK Dementia Research Institute at Imperial College London, London, United Kingdom – sequence: 3 givenname: Christos-Savvas orcidid: 0000-0002-4906-4510 surname: Bouganis fullname: Bouganis, Christos-Savvas organization: Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33477128$$D View this record in MEDLINE/PubMed |
BookMark | eNo9j1tLAzEUhIMo9qLvPkn-wNpcm-yjFG9QEESf69nkRGO72WWTFfrvtXh5Gr6ZYWBm5Dh1CQm54OyKM2sX3CheCa3FAhqPFo7I9N-akFnOH4xJbmp2SiZSKmO4sFPy-tQ1Yy4Ukqfg3DhAQerRdT6mN9oF-n5ItjFhCyW6TMPQtRRTiQPS3MftoQauxM9Y9nTMB_SIPd0hDOmbzshJgF3G81-dk5fbm-fVfbV-vHtYXa8rJxUvFSpvmxD4kqMEFzSIWgrmBJNmqaBB0LauDdQNeM011CHo4H3wRqmAzioxJ5c_u_3YtOg3_RBbGPabv6viCzgdWQM |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3219441 crossref_primary_10_1109_ACCESS_2023_3269598 crossref_primary_10_1016_j_jneuroling_2023_101180 crossref_primary_10_1038_s41598_021_98021_9 crossref_primary_10_3390_e26060495 crossref_primary_10_3389_fncom_2023_1135783 crossref_primary_10_1109_ACCESS_2022_3159225 crossref_primary_10_1038_s41598_021_02277_0 crossref_primary_10_1016_j_copbio_2021_10_001 crossref_primary_10_1109_TBME_2022_3182588 crossref_primary_10_1162_netn_a_00364 crossref_primary_10_3390_a17040156 crossref_primary_10_1016_j_cmpb_2024_108208 crossref_primary_10_1109_ACCESS_2023_3258969 crossref_primary_10_1109_TBCAS_2023_3278531 crossref_primary_10_1088_1741_2552_ac5268 crossref_primary_10_1088_1741_2552_accece crossref_primary_10_1109_ACCESS_2021_3123098 crossref_primary_10_3390_s21196372 crossref_primary_10_34133_cbsystems_0044 |
ContentType | Journal Article |
Copyright | Creative Commons Attribution license. |
Copyright_xml | – notice: Creative Commons Attribution license. |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1088/1741-2552/abde8a |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1741-2552 |
ExternalDocumentID | 33477128 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CGR CJUJL CRLBU CS3 CUY CVF DU5 EBS ECM EDWGO EIF EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NPM P2P PJBAE RIN RO9 ROL RPA SY9 W28 XPP |
ID | FETCH-LOGICAL-c341t-e4d8bff161e3acf5a29320c203764abea58997a9bad515a9ff5fddfd744fec842 |
IngestDate | Sat Sep 28 08:20:34 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | deep learning neural decoding entire spiking activity brain-machine interface quasi-recurrent neural network |
Language | English |
License | Creative Commons Attribution license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c341t-e4d8bff161e3acf5a29320c203764abea58997a9bad515a9ff5fddfd744fec842 |
ORCID | 0000-0002-4906-4510 0000-0001-9778-1162 0000-0002-9902-9051 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1741-2552/abde8a/pdf |
PMID | 33477128 |
ParticipantIDs | pubmed_primary_33477128 |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAlternate | J Neural Eng |
PublicationYear | 2021 |
SSID | ssj0031790 |
Score | 2.4701118 |
Snippet | . Brain-machine interfaces (BMIs) seek to restore lost motor functions in individuals with neurological disorders by enabling them to control external devices... |
SourceID | pubmed |
SourceType | Index Database |
SubjectTerms | Animals Biomechanical Phenomena Brain-Computer Interfaces Deep Learning Motor Cortex Neural Networks, Computer |
Title | Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33477128 |
Volume | 18 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELV2QUK9IKB8f2gOiEsVtYmdZHMsy6Je6IEWiVuZ2GNA1SYr0lTqv-_YjjfbokVw4GJZdhJZeS_2m8l4LMRbKWVhbJ4maZ2ygUIFJphVKilybXiFsmlmnR_y6KQ8_jr7sFCLySQGu49t_xVpbmOs3c7Zf0B7_VBu4DpjziWjzuVf4f65rfsuhI2j1r3LBLFn2MY0Q3iz95Sfs7b0uVq7sL_EhQz9or1u9fPcb1rUw5kSvfckGKJVPF7i-xY16_Jico3G9IZrKv1YovExA8f9OhJ4HmQpD6rtNygznvT1noU9NjcSIHTJCV5e4g1HRZZuxLdQmFxZvSRswmyZfaMR_NukzhOh8y_Eu93qVRua4ebFDMJq6SGVUpVlGnac_7n3VqLt2DUVU5ZNTlnPP8VFXbpEZsNfbh7O_now-2EoO-JevP2WfeJ1yukDcX-ABA4DMx6KCTWPxO5hgxft8gregQ_59f9SdsW3QBZgICCSBSJZoLXgyAIjWcCRBQJZYCALRLKAJws4skAky2Px5ePidH6UDEduJJrlzEVCysxqa9kMIIna5vzdyuxAZwe8DimsCXO2z0usajQshLGyNrfGWFMqZUnPVPZE3Gnahp4JoErVqOuU7YOMn1pU1liUlFFRytSq6rl4Gt7T2SrkVTmLb_DF1p6XYmdk1itx1_JHS6_FtDP9G4_XNQ8fZ-s |
link.rule.ids | 782 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+accurate+decoding+of+hand+kinematics+from+entire+spiking+activity+using+deep+learning&rft.jtitle=Journal+of+neural+engineering&rft.au=Ahmadi%2C+Nur&rft.au=Constandinou%2C+Timothy+G&rft.au=Bouganis%2C+Christos-Savvas&rft.date=2021-04-01&rft.eissn=1741-2552&rft.volume=18&rft.issue=2&rft_id=info:doi/10.1088%2F1741-2552%2Fabde8a&rft_id=info%3Apmid%2F33477128&rft_id=info%3Apmid%2F33477128&rft.externalDocID=33477128 |