Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning

. Brain-machine interfaces (BMIs) seek to restore lost motor functions in individuals with neurological disorders by enabling them to control external devices directly with their thoughts. This work aims to improve robustness and decoding accuracy that currently become major challenges in the clinic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neural engineering Vol. 18; no. 2
Main Authors: Ahmadi, Nur, Constandinou, Timothy G, Bouganis, Christos-Savvas
Format: Journal Article
Language:English
Published: England 01-04-2021
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract . Brain-machine interfaces (BMIs) seek to restore lost motor functions in individuals with neurological disorders by enabling them to control external devices directly with their thoughts. This work aims to improve robustness and decoding accuracy that currently become major challenges in the clinical translation of intracortical BMIs. . We propose entire spiking activity (ESA)-an envelope of spiking activity that can be extracted by a simple, threshold-less, and automated technique-as the input signal. We couple ESA with deep learning-based decoding algorithm that uses quasi-recurrent neural network (QRNN) architecture. We evaluate comprehensively the performance of ESA-driven QRNN decoder for decoding hand kinematics from neural signals chronically recorded from the primary motor cortex area of three non-human primates performing different tasks. . Our proposed method yields consistently higher decoding performance than any other combinations of the input signal and decoding algorithm previously reported across long-term recording sessions. It can sustain high decoding performance even when removing spikes from the raw signals, when using the different number of channels, and when using a smaller amount of training data. . Overall results demonstrate exceptionally high decoding accuracy and chronic robustness, which is highly desirable given it is an unresolved challenge in BMIs.
AbstractList . Brain-machine interfaces (BMIs) seek to restore lost motor functions in individuals with neurological disorders by enabling them to control external devices directly with their thoughts. This work aims to improve robustness and decoding accuracy that currently become major challenges in the clinical translation of intracortical BMIs. . We propose entire spiking activity (ESA)-an envelope of spiking activity that can be extracted by a simple, threshold-less, and automated technique-as the input signal. We couple ESA with deep learning-based decoding algorithm that uses quasi-recurrent neural network (QRNN) architecture. We evaluate comprehensively the performance of ESA-driven QRNN decoder for decoding hand kinematics from neural signals chronically recorded from the primary motor cortex area of three non-human primates performing different tasks. . Our proposed method yields consistently higher decoding performance than any other combinations of the input signal and decoding algorithm previously reported across long-term recording sessions. It can sustain high decoding performance even when removing spikes from the raw signals, when using the different number of channels, and when using a smaller amount of training data. . Overall results demonstrate exceptionally high decoding accuracy and chronic robustness, which is highly desirable given it is an unresolved challenge in BMIs.
Author Constandinou, Timothy G
Ahmadi, Nur
Bouganis, Christos-Savvas
Author_xml – sequence: 1
  givenname: Nur
  orcidid: 0000-0002-9902-9051
  surname: Ahmadi
  fullname: Ahmadi, Nur
  organization: Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
– sequence: 2
  givenname: Timothy G
  orcidid: 0000-0001-9778-1162
  surname: Constandinou
  fullname: Constandinou, Timothy G
  organization: Care Research & Technology Centre, UK Dementia Research Institute at Imperial College London, London, United Kingdom
– sequence: 3
  givenname: Christos-Savvas
  orcidid: 0000-0002-4906-4510
  surname: Bouganis
  fullname: Bouganis, Christos-Savvas
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33477128$$D View this record in MEDLINE/PubMed
BookMark eNo9j1tLAzEUhIMo9qLvPkn-wNpcm-yjFG9QEESf69nkRGO72WWTFfrvtXh5Gr6ZYWBm5Dh1CQm54OyKM2sX3CheCa3FAhqPFo7I9N-akFnOH4xJbmp2SiZSKmO4sFPy-tQ1Yy4Ukqfg3DhAQerRdT6mN9oF-n5ItjFhCyW6TMPQtRRTiQPS3MftoQauxM9Y9nTMB_SIPd0hDOmbzshJgF3G81-dk5fbm-fVfbV-vHtYXa8rJxUvFSpvmxD4kqMEFzSIWgrmBJNmqaBB0LauDdQNeM011CHo4H3wRqmAzioxJ5c_u_3YtOg3_RBbGPabv6viCzgdWQM
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3219441
crossref_primary_10_1109_ACCESS_2023_3269598
crossref_primary_10_1016_j_jneuroling_2023_101180
crossref_primary_10_1038_s41598_021_98021_9
crossref_primary_10_3390_e26060495
crossref_primary_10_3389_fncom_2023_1135783
crossref_primary_10_1109_ACCESS_2022_3159225
crossref_primary_10_1038_s41598_021_02277_0
crossref_primary_10_1016_j_copbio_2021_10_001
crossref_primary_10_1109_TBME_2022_3182588
crossref_primary_10_1162_netn_a_00364
crossref_primary_10_3390_a17040156
crossref_primary_10_1016_j_cmpb_2024_108208
crossref_primary_10_1109_ACCESS_2023_3258969
crossref_primary_10_1109_TBCAS_2023_3278531
crossref_primary_10_1088_1741_2552_ac5268
crossref_primary_10_1088_1741_2552_accece
crossref_primary_10_1109_ACCESS_2021_3123098
crossref_primary_10_3390_s21196372
crossref_primary_10_34133_cbsystems_0044
ContentType Journal Article
Copyright Creative Commons Attribution license.
Copyright_xml – notice: Creative Commons Attribution license.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1088/1741-2552/abde8a
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 33477128
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CGR
CJUJL
CRLBU
CS3
CUY
CVF
DU5
EBS
ECM
EDWGO
EIF
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NPM
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
ID FETCH-LOGICAL-c341t-e4d8bff161e3acf5a29320c203764abea58997a9bad515a9ff5fddfd744fec842
IngestDate Sat Sep 28 08:20:34 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
neural decoding
entire spiking activity
brain-machine interface
quasi-recurrent neural network
Language English
License Creative Commons Attribution license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c341t-e4d8bff161e3acf5a29320c203764abea58997a9bad515a9ff5fddfd744fec842
ORCID 0000-0002-4906-4510
0000-0001-9778-1162
0000-0002-9902-9051
OpenAccessLink https://iopscience.iop.org/article/10.1088/1741-2552/abde8a/pdf
PMID 33477128
ParticipantIDs pubmed_primary_33477128
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAlternate J Neural Eng
PublicationYear 2021
SSID ssj0031790
Score 2.4701118
Snippet . Brain-machine interfaces (BMIs) seek to restore lost motor functions in individuals with neurological disorders by enabling them to control external devices...
SourceID pubmed
SourceType Index Database
SubjectTerms Animals
Biomechanical Phenomena
Brain-Computer Interfaces
Deep Learning
Motor Cortex
Neural Networks, Computer
Title Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning
URI https://www.ncbi.nlm.nih.gov/pubmed/33477128
Volume 18
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELV2QUK9IKB8f2gOiEsVtYmdZHMsy6Je6IEWiVuZ2GNA1SYr0lTqv-_YjjfbokVw4GJZdhJZeS_2m8l4LMRbKWVhbJ4maZ2ygUIFJphVKilybXiFsmlmnR_y6KQ8_jr7sFCLySQGu49t_xVpbmOs3c7Zf0B7_VBu4DpjziWjzuVf4f65rfsuhI2j1r3LBLFn2MY0Q3iz95Sfs7b0uVq7sL_EhQz9or1u9fPcb1rUw5kSvfckGKJVPF7i-xY16_Jico3G9IZrKv1YovExA8f9OhJ4HmQpD6rtNygznvT1noU9NjcSIHTJCV5e4g1HRZZuxLdQmFxZvSRswmyZfaMR_NukzhOh8y_Eu93qVRua4ebFDMJq6SGVUpVlGnac_7n3VqLt2DUVU5ZNTlnPP8VFXbpEZsNfbh7O_now-2EoO-JevP2WfeJ1yukDcX-ABA4DMx6KCTWPxO5hgxft8gregQ_59f9SdsW3QBZgICCSBSJZoLXgyAIjWcCRBQJZYCALRLKAJws4skAky2Px5ePidH6UDEduJJrlzEVCysxqa9kMIIna5vzdyuxAZwe8DimsCXO2z0usajQshLGyNrfGWFMqZUnPVPZE3Gnahp4JoErVqOuU7YOMn1pU1liUlFFRytSq6rl4Gt7T2SrkVTmLb_DF1p6XYmdk1itx1_JHS6_FtDP9G4_XNQ8fZ-s
link.rule.ids 782
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+accurate+decoding+of+hand+kinematics+from+entire+spiking+activity+using+deep+learning&rft.jtitle=Journal+of+neural+engineering&rft.au=Ahmadi%2C+Nur&rft.au=Constandinou%2C+Timothy+G&rft.au=Bouganis%2C+Christos-Savvas&rft.date=2021-04-01&rft.eissn=1741-2552&rft.volume=18&rft.issue=2&rft_id=info:doi/10.1088%2F1741-2552%2Fabde8a&rft_id=info%3Apmid%2F33477128&rft_id=info%3Apmid%2F33477128&rft.externalDocID=33477128