A framework for simultaneously measuring field densities and the high-z luminosity function

ABSTRACT Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy surveys at $z \gtrsim 6$, but that same structure will also provide an opportunity to identify and study dense environments in the early Universe. Using a robust model for galaxy clustering, we direc...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society Vol. 510; no. 4; pp. 4844 - 4856
Main Authors: Trapp, A C, Furlanetto, Steven R, Yang, Jinghong
Format: Journal Article
Language:English
Published: London Oxford University Press 01-03-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy surveys at $z \gtrsim 6$, but that same structure will also provide an opportunity to identify and study dense environments in the early Universe. Using a robust model for galaxy clustering, we directly incorporate large-scale densities into an inference framework that simultaneously measures the high-z ($z \gtrsim 6$) UV luminosity function and the average matter density of each distinct volume in a survey. Through this framework, we forecast the performance of several major upcoming James Webb Space Telescope (JWST) galaxy surveys. We find that they can constrain field matter densities down to the theoretical limit imposed by Poisson noise and unambiguously identify over-dense (and under-dense) regions on transverse scales of tens of comoving Mpc. We also predict JWST will measure the luminosity function with a precision at z = 12 comparable to existing Hubble Space Telescope’s constraints at z = 8 (and even better for the faint-end slope). We also find that wide-field surveys are especially important in distinguishing luminosity function models.
AbstractList ABSTRACT Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy surveys at $z \gtrsim 6$, but that same structure will also provide an opportunity to identify and study dense environments in the early Universe. Using a robust model for galaxy clustering, we directly incorporate large-scale densities into an inference framework that simultaneously measures the high-z ($z \gtrsim 6$) UV luminosity function and the average matter density of each distinct volume in a survey. Through this framework, we forecast the performance of several major upcoming James Webb Space Telescope (JWST) galaxy surveys. We find that they can constrain field matter densities down to the theoretical limit imposed by Poisson noise and unambiguously identify over-dense (and under-dense) regions on transverse scales of tens of comoving Mpc. We also predict JWST will measure the luminosity function with a precision at z = 12 comparable to existing Hubble Space Telescope’s constraints at z = 8 (and even better for the faint-end slope). We also find that wide-field surveys are especially important in distinguishing luminosity function models.
Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy surveys at $z \gtrsim 6$, but that same structure will also provide an opportunity to identify and study dense environments in the early Universe. Using a robust model for galaxy clustering, we directly incorporate large-scale densities into an inference framework that simultaneously measures the high-z ($z \gtrsim 6$) UV luminosity function and the average matter density of each distinct volume in a survey. Through this framework, we forecast the performance of several major upcoming James Webb Space Telescope (JWST) galaxy surveys. We find that they can constrain field matter densities down to the theoretical limit imposed by Poisson noise and unambiguously identify over-dense (and under-dense) regions on transverse scales of tens of comoving Mpc. We also predict JWST will measure the luminosity function with a precision at z = 12 comparable to existing Hubble Space Telescope’s constraints at z = 8 (and even better for the faint-end slope). We also find that wide-field surveys are especially important in distinguishing luminosity function models.
Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy surveys at $z \gtrsim 6$, but that same structure will also provide an opportunity to identify and study dense environments in the early Universe. Using a robust model for galaxy clustering, we directly incorporate large-scale densities into an inference framework that simultaneously measures the high-z ($z \gtrsim 6$) UV luminosity function and the average matter density of each distinct volume in a survey. Through this framework, we forecast the performance of several major upcoming James Webb Space Telescope (JWST) galaxy surveys. We find that they can constrain field matter densities down to the theoretical limit imposed by Poisson noise and unambiguously identify over-dense (and under-dense) regions on transverse scales of tens of comoving Mpc. We also predict JWST will measure the luminosity function with a precision at z = 12 comparable to existing Hubble Space Telescope’s constraints at z = 8 (and even better for the faint-end slope). We also find that wide-field surveys are especially important in distinguishing luminosity function models.
Author Yang, Jinghong
Furlanetto, Steven R
Trapp, A C
Author_xml – sequence: 1
  givenname: A C
  orcidid: 0000-0003-4650-9358
  surname: Trapp
  fullname: Trapp, A C
  email: atrapp@astro.ucla.edu
– sequence: 2
  givenname: Steven R
  orcidid: 0000-0002-0658-1243
  surname: Furlanetto
  fullname: Furlanetto, Steven R
– sequence: 3
  givenname: Jinghong
  surname: Yang
  fullname: Yang, Jinghong
BookMark eNqFkD1PwzAURS1UJNrCymyJiSHtc5w49lhVfEmVWGBiiJzEblwSu9ixUPn1pBRmpjfcc--TzgxNrLMKoWsCCwKCLnvrZViGQVaUAzlDU0JZnqSCsQmaAtA84QUhF2gWwg4AMpqyKXpbYe1lrz6df8faeRxMH7tBWuVi6A64VzJEb-wWa6O6BjfKBjMYFbC0DR5ahVuzbZMv3MXeWDdmB6yjrQfj7CU617IL6ur3ztHr_d3L-jHZPD88rVebpKYZGZKCCJZXwJgAXnHONG2gEFmhmMgBUtGwnEDDG8mFlJmWFWFQsCqtyUhWmtA5ujnt7r37iCoM5c5Fb8eXJSUph5Tl7EgtTlTtXQhe6XLvTS_9oSRQHgWWPwLLP4Fj4fZUcHH_H_sNVzN2ew
CitedBy_id crossref_primary_10_1093_mnrasl_slad115
crossref_primary_10_1093_mnras_stac3578
crossref_primary_10_1093_mnras_stac2320
crossref_primary_10_1093_mnras_stad1819
Cites_doi 10.1093/mnras/stx324
10.1109/mcse.2007.55
10.1093/mnras/staa1605
10.1038/s41592-019-0686-2
10.1088/0004-637X/799/1/12
10.1088/2041-8205/810/1/L12
10.3847/1538-4357/ac2a34
10.1088/0004-637X/813/1/21
10.1088/0004-637X/810/1/71
10.1038/s41550-020-01291-y
10.1093/mnras/stw2412
10.1109/mcse.2007.53
10.1109/mcse.2011.37
10.1051/0004-6361/202037450
10.1111/j.1365-2966.2007.11482.x
10.1093/mnras/stz1182
10.1086/423025
10.1093/mnras/282.2.347
10.1088/0004-637X/773/1/75
10.3847/1538-4357/835/2/113
10.1093/mnras/stw904
10.1088/0004-637X/799/1/32
10.1088/2041-8205/768/2/L37
10.3847/2041-8213/ab75ec
10.1093/mnras/stw1542
10.1093/mnras/staa2828
10.1111/j.1745-3933.2007.00292.x
10.3847/1538-4357/aacc73
10.1088/0004-637X/803/1/34
10.1093/mnras/stv780
10.3847/1538-4357/abbd44
10.3847/1538-4357/aac2d6
10.1086/177446
10.1093/mnras/sty1820
10.3847/1538-4357/ab24c5
10.1093/mnras/stab432
10.1093/mnras/stab1229
10.3847/1538-3881/abf83e
10.1093/mnras/stv1403
10.1093/mnras/stu1412
10.3847/1538-4357/aab03f
10.1093/mnras/stx2132
10.1051/0004-6361/201525830
10.3847/2041-8213/aa7e7b
10.1088/0004-637X/813/1/54
10.1093/mnras/262.3.627
10.1088/0004-637X/808/1/104
ContentType Journal Article
Copyright 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022
2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society
Copyright_xml – notice: 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022
– notice: 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1093/mnras/stab3801
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 4856
ExternalDocumentID 10_1093_mnras_stab3801
10.1093/mnras/stab3801
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c341t-71965b066908b886f3d07947e6950029d6510d8da89aa4fab16076b2c1f3dbf13
ISSN 0035-8711
IngestDate Thu Nov 14 06:12:13 EST 2024
Thu Nov 21 21:23:55 EST 2024
Fri Nov 15 02:52:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords galaxies: high-redshift
methods: data analysis
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c341t-71965b066908b886f3d07947e6950029d6510d8da89aa4fab16076b2c1f3dbf13
ORCID 0000-0002-0658-1243
0000-0003-4650-9358
OpenAccessLink https://academic.oup.com/mnras/article-pdf/510/4/4844/42229129/stab3801.pdf
PQID 3128026561
PQPubID 42411
PageCount 13
ParticipantIDs proquest_journals_3128026561
crossref_primary_10_1093_mnras_stab3801
oup_primary_10_1093_mnras_stab3801
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hu (2023010423251991500_bib20) 2021; 5
Trapp (2023010423251991500_bib46) 2020; 499
Zitrin (2023010423251991500_bib50) 2015; 810
Behroozi (2023010423251991500_bib3) 2019; 488
Christenson (2023010423251991500_bib11) 2021
Bouwens (2023010423251991500_bib8) 2019; 880
Finkelstein (2023010423251991500_bib16) 2021
Oesch (2023010423251991500_bib36) 2013; 773
Ucci (2023010423251991500_bib47) 2021; 506
McLeod (2023010423251991500_bib32) 2016; 459
Tacchella (2023010423251991500_bib41) 2013; 768
Mason (2023010423251991500_bib29) 2015; 813
Iliev (2023010423251991500_bib22) 2007; 376
Bhowmick (2023010423251991500_bib5) 2020; 496
Tilvi (2023010423251991500_bib43) 2020; 891
Behroozi (2023010423251991500_bib4) 2015; 799
Mirocha (2023010423251991500_bib33) 2017; 464
van der Walt (2023010423251991500_bib48) 2011; 13
Kauffmann (2023010423251991500_bib25) 2020; 640
McLeod (2023010423251991500_bib31) 2015; 450
Finkelstein (2023010423251991500_bib15) 2015; 810
Noh (2023010423251991500_bib35) 2014; 444
Virtanen (2023010423251991500_bib49) 2020; 17
Livermore (2023010423251991500_bib28) 2017; 835
Oesch (2023010423251991500_bib38) 2018; 855
Atek (2023010423251991500_bib1) 2018; 479
Gao (2023010423251991500_bib19) 2007; 377
Planck Collaboration XIII (2023010423251991500_bib40) 2016; 594
Endsley (2023010423251991500_bib14) 2021; 502
Hunter (2023010423251991500_bib21) 2007; 9
Jung (2023010423251991500_bib24) 2020; 904
Tramonte (2023010423251991500_bib45) 2017; 467
Mo (2023010423251991500_bib34) 1996; 282
Furlanetto (2023010423251991500_bib18) 2017; 472
Bouwens (2023010423251991500_bib7) 2021; 162
Trac (2023010423251991500_bib44) 2015; 813
Davies (2023010423251991500_bib13) 2018; 860
Thoul (2023010423251991500_bib42) 1996; 465
Virtanen (2023010423251991500_bib30) 2020
Lin (2023010423251991500_bib27) 2016; 461
Oesch (2023010423251991500_bib37) 2015; 808
Davies (2023010423251991500_bib12) 2021
Becker (2023010423251991500_bib2) 2018; 863
Lacey (2023010423251991500_bib26) 1993; 262
Bouwens (2023010423251991500_bib6) 2015; 803
Chiang (2023010423251991500_bib10) 2017; 844
Furlanetto (2023010423251991500_bib17) 2004; 613
Perez (2023010423251991500_bib39) 2007; 9
Bowler (2023010423251991500_bib9) 2015; 452
Ishigaki (2023010423251991500_bib23) 2015; 799
References_xml – volume: 467
  start-page: 3424
  year: 2017
  ident: 2023010423251991500_bib45
  publication-title: MNRAS
  doi: 10.1093/mnras/stx324
  contributor:
    fullname: Tramonte
– volume: 9
  start-page: 90
  year: 2007
  ident: 2023010423251991500_bib21
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/mcse.2007.55
  contributor:
    fullname: Hunter
– volume: 496
  start-page: 754
  year: 2020
  ident: 2023010423251991500_bib5
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1605
  contributor:
    fullname: Bhowmick
– volume: 17
  start-page: 261
  year: 2020
  ident: 2023010423251991500_bib49
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
  contributor:
    fullname: Virtanen
– volume: 799
  start-page: 12
  year: 2015
  ident: 2023010423251991500_bib23
  publication-title: ApJ
  doi: 10.1088/0004-637X/799/1/12
  contributor:
    fullname: Ishigaki
– volume: 810
  start-page: L12
  year: 2015
  ident: 2023010423251991500_bib50
  publication-title: ApJ
  doi: 10.1088/2041-8205/810/1/L12
  contributor:
    fullname: Zitrin
– start-page: 87
  volume-title: ApJ
  year: 2021
  ident: 2023010423251991500_bib11
  doi: 10.3847/1538-4357/ac2a34
  contributor:
    fullname: Christenson
– volume: 813
  start-page: 21
  year: 2015
  ident: 2023010423251991500_bib29
  publication-title: ApJ
  doi: 10.1088/0004-637X/813/1/21
  contributor:
    fullname: Mason
– volume: 810
  start-page: 71
  year: 2015
  ident: 2023010423251991500_bib15
  publication-title: ApJ
  doi: 10.1088/0004-637X/810/1/71
  contributor:
    fullname: Finkelstein
– volume: 5
  start-page: 485
  year: 2021
  ident: 2023010423251991500_bib20
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-020-01291-y
  contributor:
    fullname: Hu
– volume: 464
  start-page: 1365
  year: 2017
  ident: 2023010423251991500_bib33
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2412
  contributor:
    fullname: Mirocha
– volume: 9
  start-page: 21
  year: 2007
  ident: 2023010423251991500_bib39
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/mcse.2007.53
  contributor:
    fullname: Perez
– volume: 13
  start-page: 22
  year: 2011
  ident: 2023010423251991500_bib48
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/mcse.2011.37
  contributor:
    fullname: van der Walt
– volume: 640
  start-page: A67
  year: 2020
  ident: 2023010423251991500_bib25
  publication-title: A&A
  doi: 10.1051/0004-6361/202037450
  contributor:
    fullname: Kauffmann
– volume: 376
  start-page: 534
  year: 2007
  ident: 2023010423251991500_bib22
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.11482.x
  contributor:
    fullname: Iliev
– volume: 488
  start-page: 3143
  year: 2019
  ident: 2023010423251991500_bib3
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1182
  contributor:
    fullname: Behroozi
– volume: 613
  start-page: 1
  year: 2004
  ident: 2023010423251991500_bib17
  publication-title: ApJ
  doi: 10.1086/423025
  contributor:
    fullname: Furlanetto
– volume: 282
  start-page: 347
  year: 1996
  ident: 2023010423251991500_bib34
  publication-title: MNRAS
  doi: 10.1093/mnras/282.2.347
  contributor:
    fullname: Mo
– volume: 773
  start-page: 75
  year: 2013
  ident: 2023010423251991500_bib36
  publication-title: ApJ
  doi: 10.1088/0004-637X/773/1/75
  contributor:
    fullname: Oesch
– volume: 835
  start-page: 113
  year: 2017
  ident: 2023010423251991500_bib28
  publication-title: ApJ
  doi: 10.3847/1538-4357/835/2/113
  contributor:
    fullname: Livermore
– volume: 459
  start-page: 3812
  year: 2016
  ident: 2023010423251991500_bib32
  publication-title: MNRAS
  doi: 10.1093/mnras/stw904
  contributor:
    fullname: McLeod
– volume-title: ApJ
  year: 2021
  ident: 2023010423251991500_bib16
  contributor:
    fullname: Finkelstein
– volume-title: MNRAS
  year: 2021
  ident: 2023010423251991500_bib12
  contributor:
    fullname: Davies
– volume: 799
  start-page: 32
  year: 2015
  ident: 2023010423251991500_bib4
  publication-title: ApJ
  doi: 10.1088/0004-637X/799/1/32
  contributor:
    fullname: Behroozi
– volume: 768
  start-page: L37
  year: 2013
  ident: 2023010423251991500_bib41
  publication-title: ApJ
  doi: 10.1088/2041-8205/768/2/L37
  contributor:
    fullname: Tacchella
– volume: 891
  start-page: L10
  year: 2020
  ident: 2023010423251991500_bib43
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab75ec
  contributor:
    fullname: Tilvi
– start-page: 261
  volume-title: Nature Methods
  year: 2020
  ident: 2023010423251991500_bib30
  doi: 10.1038/s41592-019-0686-2
  contributor:
    fullname: Virtanen
– volume: 461
  start-page: 3361
  year: 2016
  ident: 2023010423251991500_bib27
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1542
  contributor:
    fullname: Lin
– volume: 499
  start-page: 2401
  year: 2020
  ident: 2023010423251991500_bib46
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2828
  contributor:
    fullname: Trapp
– volume: 377
  start-page: L5
  year: 2007
  ident: 2023010423251991500_bib19
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2007.00292.x
  contributor:
    fullname: Gao
– volume: 863
  start-page: 92
  year: 2018
  ident: 2023010423251991500_bib2
  publication-title: ApJ
  doi: 10.3847/1538-4357/aacc73
  contributor:
    fullname: Becker
– volume: 803
  start-page: 34
  year: 2015
  ident: 2023010423251991500_bib6
  publication-title: ApJ
  doi: 10.1088/0004-637X/803/1/34
  contributor:
    fullname: Bouwens
– volume: 450
  start-page: 3032
  year: 2015
  ident: 2023010423251991500_bib31
  publication-title: MNRAS
  doi: 10.1093/mnras/stv780
  contributor:
    fullname: McLeod
– volume: 904
  start-page: 144
  year: 2020
  ident: 2023010423251991500_bib24
  publication-title: ApJ
  doi: 10.3847/1538-4357/abbd44
  contributor:
    fullname: Jung
– volume: 860
  start-page: 155
  year: 2018
  ident: 2023010423251991500_bib13
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac2d6
  contributor:
    fullname: Davies
– volume: 465
  start-page: 608
  year: 1996
  ident: 2023010423251991500_bib42
  publication-title: ApJ
  doi: 10.1086/177446
  contributor:
    fullname: Thoul
– volume: 479
  start-page: 5184
  year: 2018
  ident: 2023010423251991500_bib1
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1820
  contributor:
    fullname: Atek
– volume: 880
  start-page: 25
  year: 2019
  ident: 2023010423251991500_bib8
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab24c5
  contributor:
    fullname: Bouwens
– volume: 502
  start-page: 6044
  year: 2021
  ident: 2023010423251991500_bib14
  publication-title: MNRAS
  doi: 10.1093/mnras/stab432
  contributor:
    fullname: Endsley
– volume: 506
  start-page: 202
  year: 2021
  ident: 2023010423251991500_bib47
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1229
  contributor:
    fullname: Ucci
– volume: 162
  start-page: 47
  year: 2021
  ident: 2023010423251991500_bib7
  publication-title: AJ
  doi: 10.3847/1538-3881/abf83e
  contributor:
    fullname: Bouwens
– volume: 452
  start-page: 1817
  year: 2015
  ident: 2023010423251991500_bib9
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1403
  contributor:
    fullname: Bowler
– volume: 444
  start-page: 503
  year: 2014
  ident: 2023010423251991500_bib35
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1412
  contributor:
    fullname: Noh
– volume: 855
  start-page: 105
  year: 2018
  ident: 2023010423251991500_bib38
  publication-title: ApJ
  doi: 10.3847/1538-4357/aab03f
  contributor:
    fullname: Oesch
– volume: 472
  start-page: 1576
  year: 2017
  ident: 2023010423251991500_bib18
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2132
  contributor:
    fullname: Furlanetto
– volume: 594
  start-page: A13
  year: 2016
  ident: 2023010423251991500_bib40
  publication-title: A&A
  doi: 10.1051/0004-6361/201525830
  contributor:
    fullname: Planck Collaboration XIII
– volume: 844
  start-page: L23
  year: 2017
  ident: 2023010423251991500_bib10
  publication-title: ApJ
  doi: 10.3847/2041-8213/aa7e7b
  contributor:
    fullname: Chiang
– volume: 813
  start-page: 54
  year: 2015
  ident: 2023010423251991500_bib44
  publication-title: ApJ
  doi: 10.1088/0004-637X/813/1/54
  contributor:
    fullname: Trac
– volume: 262
  start-page: 627
  year: 1993
  ident: 2023010423251991500_bib26
  publication-title: MNRAS
  doi: 10.1093/mnras/262.3.627
  contributor:
    fullname: Lacey
– volume: 808
  start-page: 104
  year: 2015
  ident: 2023010423251991500_bib37
  publication-title: ApJ
  doi: 10.1088/0004-637X/808/1/104
  contributor:
    fullname: Oesch
SSID ssj0004326
Score 2.4758072
Snippet ABSTRACT Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy surveys at $z \gtrsim 6$, but that same structure will...
Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy surveys at $z \gtrsim 6$, but that same structure will also provide...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Publisher
StartPage 4844
SubjectTerms Clustering
Galaxies
James Webb Space Telescope
Large scale structure of the universe
Luminosity
Noise prediction
Space telescopes
Title A framework for simultaneously measuring field densities and the high-z luminosity function
URI https://www.proquest.com/docview/3128026561
Volume 510
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb5RAFJ5s24sXo1XT1WomxuiBkO4ywA5HrLtpTPRibWo8EGCGdJMWNsvuof71fvOTboxaD14IC-wE5n28X3zzHiFvJrMmSrloQviqEgFKVoWlFFEoYJpiBoOXSZVwO_sy-3zJP8zj-WjkegsOx_6rpHEMslYrZ_9B2n5QHMA-ZI4tpI7tveSeB43jW2kKYb9UnMGylQjxr2-DG50T1PRJxV0LhCKwq6KqnkqpChiHPwIorWXbacaGsn1efq77U9durjBe2yn2XO-oBiYbkfcqwd6ZSgSWF-pTBOtytTIaySdoF1vNud3olk6BabQ2MBm_2ZT2R9z1VWctrU1UIMb1TK0_LYC8q5xZAuVsda80-liT8DLTmMUp7MQSYZd30xFa_cbcFJO0pjzmpmj5L2bClNC6addq0dwCbnjFuL3V3eLbv794jxxE0G1QrQf5-8uLi2ExLtM9_vzT-Eqh7ESPceJG2PGEdlZXOndA-zjnj8hDG5zQ3KDqMRnJ9pAcOWne0rdU75tsWH9Ixp8QcnVr_WUGJ0-vl4h_9K8n5HtOPRApZEJ3gUg9EKkGIvVApAAiBZaoASIdgEgdEJ-Sr4v5-elZaDt5hDW8pE04U3UrK3i32YRXnKcNExMYgplMs0R9FxYpZCq4KHlWlnFTVqrsYVpF9RRXVs2UPSP7bdfKI0KTqM4E_iRE3MQ4U0ZJU8uMZwKxf1lHY_LOzWqxMgVbCkO0YIWe_8LN_5i8xqT_9aJjJ5PCvuV9weDUTSJEQtPn9xnjBXkwvA_HZH-z3sqXZK8X21cWPD8Bc_KoQA
link.rule.ids 315,782,786,27933,27934
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+for+simultaneously+measuring+field+densities+and+the+high-z+luminosity+function&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Trapp%2C+A+C&rft.au=Furlanetto%2C+Steven+R&rft.au=Yang%2C+Jinghong&rft.date=2022-03-01&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=510&rft.issue=4&rft.spage=4844&rft.epage=4856&rft_id=info:doi/10.1093%2Fmnras%2Fstab3801&rft.externalDocID=10.1093%2Fmnras%2Fstab3801
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon