A framework for simultaneously measuring field densities and the high-z luminosity function
ABSTRACT Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy surveys at $z \gtrsim 6$, but that same structure will also provide an opportunity to identify and study dense environments in the early Universe. Using a robust model for galaxy clustering, we direc...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society Vol. 510; no. 4; pp. 4844 - 4856 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Oxford University Press
01-03-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | ABSTRACT
Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy surveys at $z \gtrsim 6$, but that same structure will also provide an opportunity to identify and study dense environments in the early Universe. Using a robust model for galaxy clustering, we directly incorporate large-scale densities into an inference framework that simultaneously measures the high-z ($z \gtrsim 6$) UV luminosity function and the average matter density of each distinct volume in a survey. Through this framework, we forecast the performance of several major upcoming James Webb Space Telescope (JWST) galaxy surveys. We find that they can constrain field matter densities down to the theoretical limit imposed by Poisson noise and unambiguously identify over-dense (and under-dense) regions on transverse scales of tens of comoving Mpc. We also predict JWST will measure the luminosity function with a precision at z = 12 comparable to existing Hubble Space Telescope’s constraints at z = 8 (and even better for the faint-end slope). We also find that wide-field surveys are especially important in distinguishing luminosity function models. |
---|---|
AbstractList | ABSTRACT
Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy surveys at $z \gtrsim 6$, but that same structure will also provide an opportunity to identify and study dense environments in the early Universe. Using a robust model for galaxy clustering, we directly incorporate large-scale densities into an inference framework that simultaneously measures the high-z ($z \gtrsim 6$) UV luminosity function and the average matter density of each distinct volume in a survey. Through this framework, we forecast the performance of several major upcoming James Webb Space Telescope (JWST) galaxy surveys. We find that they can constrain field matter densities down to the theoretical limit imposed by Poisson noise and unambiguously identify over-dense (and under-dense) regions on transverse scales of tens of comoving Mpc. We also predict JWST will measure the luminosity function with a precision at z = 12 comparable to existing Hubble Space Telescope’s constraints at z = 8 (and even better for the faint-end slope). We also find that wide-field surveys are especially important in distinguishing luminosity function models. Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy surveys at $z \gtrsim 6$, but that same structure will also provide an opportunity to identify and study dense environments in the early Universe. Using a robust model for galaxy clustering, we directly incorporate large-scale densities into an inference framework that simultaneously measures the high-z ($z \gtrsim 6$) UV luminosity function and the average matter density of each distinct volume in a survey. Through this framework, we forecast the performance of several major upcoming James Webb Space Telescope (JWST) galaxy surveys. We find that they can constrain field matter densities down to the theoretical limit imposed by Poisson noise and unambiguously identify over-dense (and under-dense) regions on transverse scales of tens of comoving Mpc. We also predict JWST will measure the luminosity function with a precision at z = 12 comparable to existing Hubble Space Telescope’s constraints at z = 8 (and even better for the faint-end slope). We also find that wide-field surveys are especially important in distinguishing luminosity function models. Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy surveys at $z \gtrsim 6$, but that same structure will also provide an opportunity to identify and study dense environments in the early Universe. Using a robust model for galaxy clustering, we directly incorporate large-scale densities into an inference framework that simultaneously measures the high-z ($z \gtrsim 6$) UV luminosity function and the average matter density of each distinct volume in a survey. Through this framework, we forecast the performance of several major upcoming James Webb Space Telescope (JWST) galaxy surveys. We find that they can constrain field matter densities down to the theoretical limit imposed by Poisson noise and unambiguously identify over-dense (and under-dense) regions on transverse scales of tens of comoving Mpc. We also predict JWST will measure the luminosity function with a precision at z = 12 comparable to existing Hubble Space Telescope’s constraints at z = 8 (and even better for the faint-end slope). We also find that wide-field surveys are especially important in distinguishing luminosity function models. |
Author | Yang, Jinghong Furlanetto, Steven R Trapp, A C |
Author_xml | – sequence: 1 givenname: A C orcidid: 0000-0003-4650-9358 surname: Trapp fullname: Trapp, A C email: atrapp@astro.ucla.edu – sequence: 2 givenname: Steven R orcidid: 0000-0002-0658-1243 surname: Furlanetto fullname: Furlanetto, Steven R – sequence: 3 givenname: Jinghong surname: Yang fullname: Yang, Jinghong |
BookMark | eNqFkD1PwzAURS1UJNrCymyJiSHtc5w49lhVfEmVWGBiiJzEblwSu9ixUPn1pBRmpjfcc--TzgxNrLMKoWsCCwKCLnvrZViGQVaUAzlDU0JZnqSCsQmaAtA84QUhF2gWwg4AMpqyKXpbYe1lrz6df8faeRxMH7tBWuVi6A64VzJEb-wWa6O6BjfKBjMYFbC0DR5ahVuzbZMv3MXeWDdmB6yjrQfj7CU617IL6ur3ztHr_d3L-jHZPD88rVebpKYZGZKCCJZXwJgAXnHONG2gEFmhmMgBUtGwnEDDG8mFlJmWFWFQsCqtyUhWmtA5ujnt7r37iCoM5c5Fb8eXJSUph5Tl7EgtTlTtXQhe6XLvTS_9oSRQHgWWPwLLP4Fj4fZUcHH_H_sNVzN2ew |
CitedBy_id | crossref_primary_10_1093_mnrasl_slad115 crossref_primary_10_1093_mnras_stac3578 crossref_primary_10_1093_mnras_stac2320 crossref_primary_10_1093_mnras_stad1819 |
Cites_doi | 10.1093/mnras/stx324 10.1109/mcse.2007.55 10.1093/mnras/staa1605 10.1038/s41592-019-0686-2 10.1088/0004-637X/799/1/12 10.1088/2041-8205/810/1/L12 10.3847/1538-4357/ac2a34 10.1088/0004-637X/813/1/21 10.1088/0004-637X/810/1/71 10.1038/s41550-020-01291-y 10.1093/mnras/stw2412 10.1109/mcse.2007.53 10.1109/mcse.2011.37 10.1051/0004-6361/202037450 10.1111/j.1365-2966.2007.11482.x 10.1093/mnras/stz1182 10.1086/423025 10.1093/mnras/282.2.347 10.1088/0004-637X/773/1/75 10.3847/1538-4357/835/2/113 10.1093/mnras/stw904 10.1088/0004-637X/799/1/32 10.1088/2041-8205/768/2/L37 10.3847/2041-8213/ab75ec 10.1093/mnras/stw1542 10.1093/mnras/staa2828 10.1111/j.1745-3933.2007.00292.x 10.3847/1538-4357/aacc73 10.1088/0004-637X/803/1/34 10.1093/mnras/stv780 10.3847/1538-4357/abbd44 10.3847/1538-4357/aac2d6 10.1086/177446 10.1093/mnras/sty1820 10.3847/1538-4357/ab24c5 10.1093/mnras/stab432 10.1093/mnras/stab1229 10.3847/1538-3881/abf83e 10.1093/mnras/stv1403 10.1093/mnras/stu1412 10.3847/1538-4357/aab03f 10.1093/mnras/stx2132 10.1051/0004-6361/201525830 10.3847/2041-8213/aa7e7b 10.1088/0004-637X/813/1/54 10.1093/mnras/262.3.627 10.1088/0004-637X/808/1/104 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society |
Copyright_xml | – notice: 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022 – notice: 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1093/mnras/stab3801 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 4856 |
ExternalDocumentID | 10_1093_mnras_stab3801 10.1093/mnras/stab3801 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABCQN ABCQX ABEJV ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c341t-71965b066908b886f3d07947e6950029d6510d8da89aa4fab16076b2c1f3dbf13 |
ISSN | 0035-8711 |
IngestDate | Thu Nov 14 06:12:13 EST 2024 Thu Nov 21 21:23:55 EST 2024 Fri Nov 15 02:52:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | galaxies: high-redshift methods: data analysis |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c341t-71965b066908b886f3d07947e6950029d6510d8da89aa4fab16076b2c1f3dbf13 |
ORCID | 0000-0002-0658-1243 0000-0003-4650-9358 |
OpenAccessLink | https://academic.oup.com/mnras/article-pdf/510/4/4844/42229129/stab3801.pdf |
PQID | 3128026561 |
PQPubID | 42411 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3128026561 crossref_primary_10_1093_mnras_stab3801 oup_primary_10_1093_mnras_stab3801 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Hu (2023010423251991500_bib20) 2021; 5 Trapp (2023010423251991500_bib46) 2020; 499 Zitrin (2023010423251991500_bib50) 2015; 810 Behroozi (2023010423251991500_bib3) 2019; 488 Christenson (2023010423251991500_bib11) 2021 Bouwens (2023010423251991500_bib8) 2019; 880 Finkelstein (2023010423251991500_bib16) 2021 Oesch (2023010423251991500_bib36) 2013; 773 Ucci (2023010423251991500_bib47) 2021; 506 McLeod (2023010423251991500_bib32) 2016; 459 Tacchella (2023010423251991500_bib41) 2013; 768 Mason (2023010423251991500_bib29) 2015; 813 Iliev (2023010423251991500_bib22) 2007; 376 Bhowmick (2023010423251991500_bib5) 2020; 496 Tilvi (2023010423251991500_bib43) 2020; 891 Behroozi (2023010423251991500_bib4) 2015; 799 Mirocha (2023010423251991500_bib33) 2017; 464 van der Walt (2023010423251991500_bib48) 2011; 13 Kauffmann (2023010423251991500_bib25) 2020; 640 McLeod (2023010423251991500_bib31) 2015; 450 Finkelstein (2023010423251991500_bib15) 2015; 810 Noh (2023010423251991500_bib35) 2014; 444 Virtanen (2023010423251991500_bib49) 2020; 17 Livermore (2023010423251991500_bib28) 2017; 835 Oesch (2023010423251991500_bib38) 2018; 855 Atek (2023010423251991500_bib1) 2018; 479 Gao (2023010423251991500_bib19) 2007; 377 Planck Collaboration XIII (2023010423251991500_bib40) 2016; 594 Endsley (2023010423251991500_bib14) 2021; 502 Hunter (2023010423251991500_bib21) 2007; 9 Jung (2023010423251991500_bib24) 2020; 904 Tramonte (2023010423251991500_bib45) 2017; 467 Mo (2023010423251991500_bib34) 1996; 282 Furlanetto (2023010423251991500_bib18) 2017; 472 Bouwens (2023010423251991500_bib7) 2021; 162 Trac (2023010423251991500_bib44) 2015; 813 Davies (2023010423251991500_bib13) 2018; 860 Thoul (2023010423251991500_bib42) 1996; 465 Virtanen (2023010423251991500_bib30) 2020 Lin (2023010423251991500_bib27) 2016; 461 Oesch (2023010423251991500_bib37) 2015; 808 Davies (2023010423251991500_bib12) 2021 Becker (2023010423251991500_bib2) 2018; 863 Lacey (2023010423251991500_bib26) 1993; 262 Bouwens (2023010423251991500_bib6) 2015; 803 Chiang (2023010423251991500_bib10) 2017; 844 Furlanetto (2023010423251991500_bib17) 2004; 613 Perez (2023010423251991500_bib39) 2007; 9 Bowler (2023010423251991500_bib9) 2015; 452 Ishigaki (2023010423251991500_bib23) 2015; 799 |
References_xml | – volume: 467 start-page: 3424 year: 2017 ident: 2023010423251991500_bib45 publication-title: MNRAS doi: 10.1093/mnras/stx324 contributor: fullname: Tramonte – volume: 9 start-page: 90 year: 2007 ident: 2023010423251991500_bib21 publication-title: Comput. Sci. Eng. doi: 10.1109/mcse.2007.55 contributor: fullname: Hunter – volume: 496 start-page: 754 year: 2020 ident: 2023010423251991500_bib5 publication-title: MNRAS doi: 10.1093/mnras/staa1605 contributor: fullname: Bhowmick – volume: 17 start-page: 261 year: 2020 ident: 2023010423251991500_bib49 publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 contributor: fullname: Virtanen – volume: 799 start-page: 12 year: 2015 ident: 2023010423251991500_bib23 publication-title: ApJ doi: 10.1088/0004-637X/799/1/12 contributor: fullname: Ishigaki – volume: 810 start-page: L12 year: 2015 ident: 2023010423251991500_bib50 publication-title: ApJ doi: 10.1088/2041-8205/810/1/L12 contributor: fullname: Zitrin – start-page: 87 volume-title: ApJ year: 2021 ident: 2023010423251991500_bib11 doi: 10.3847/1538-4357/ac2a34 contributor: fullname: Christenson – volume: 813 start-page: 21 year: 2015 ident: 2023010423251991500_bib29 publication-title: ApJ doi: 10.1088/0004-637X/813/1/21 contributor: fullname: Mason – volume: 810 start-page: 71 year: 2015 ident: 2023010423251991500_bib15 publication-title: ApJ doi: 10.1088/0004-637X/810/1/71 contributor: fullname: Finkelstein – volume: 5 start-page: 485 year: 2021 ident: 2023010423251991500_bib20 publication-title: Nat. Astron. doi: 10.1038/s41550-020-01291-y contributor: fullname: Hu – volume: 464 start-page: 1365 year: 2017 ident: 2023010423251991500_bib33 publication-title: MNRAS doi: 10.1093/mnras/stw2412 contributor: fullname: Mirocha – volume: 9 start-page: 21 year: 2007 ident: 2023010423251991500_bib39 publication-title: Comput. Sci. Eng. doi: 10.1109/mcse.2007.53 contributor: fullname: Perez – volume: 13 start-page: 22 year: 2011 ident: 2023010423251991500_bib48 publication-title: Comput. Sci. Eng. doi: 10.1109/mcse.2011.37 contributor: fullname: van der Walt – volume: 640 start-page: A67 year: 2020 ident: 2023010423251991500_bib25 publication-title: A&A doi: 10.1051/0004-6361/202037450 contributor: fullname: Kauffmann – volume: 376 start-page: 534 year: 2007 ident: 2023010423251991500_bib22 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.11482.x contributor: fullname: Iliev – volume: 488 start-page: 3143 year: 2019 ident: 2023010423251991500_bib3 publication-title: MNRAS doi: 10.1093/mnras/stz1182 contributor: fullname: Behroozi – volume: 613 start-page: 1 year: 2004 ident: 2023010423251991500_bib17 publication-title: ApJ doi: 10.1086/423025 contributor: fullname: Furlanetto – volume: 282 start-page: 347 year: 1996 ident: 2023010423251991500_bib34 publication-title: MNRAS doi: 10.1093/mnras/282.2.347 contributor: fullname: Mo – volume: 773 start-page: 75 year: 2013 ident: 2023010423251991500_bib36 publication-title: ApJ doi: 10.1088/0004-637X/773/1/75 contributor: fullname: Oesch – volume: 835 start-page: 113 year: 2017 ident: 2023010423251991500_bib28 publication-title: ApJ doi: 10.3847/1538-4357/835/2/113 contributor: fullname: Livermore – volume: 459 start-page: 3812 year: 2016 ident: 2023010423251991500_bib32 publication-title: MNRAS doi: 10.1093/mnras/stw904 contributor: fullname: McLeod – volume-title: ApJ year: 2021 ident: 2023010423251991500_bib16 contributor: fullname: Finkelstein – volume-title: MNRAS year: 2021 ident: 2023010423251991500_bib12 contributor: fullname: Davies – volume: 799 start-page: 32 year: 2015 ident: 2023010423251991500_bib4 publication-title: ApJ doi: 10.1088/0004-637X/799/1/32 contributor: fullname: Behroozi – volume: 768 start-page: L37 year: 2013 ident: 2023010423251991500_bib41 publication-title: ApJ doi: 10.1088/2041-8205/768/2/L37 contributor: fullname: Tacchella – volume: 891 start-page: L10 year: 2020 ident: 2023010423251991500_bib43 publication-title: ApJ doi: 10.3847/2041-8213/ab75ec contributor: fullname: Tilvi – start-page: 261 volume-title: Nature Methods year: 2020 ident: 2023010423251991500_bib30 doi: 10.1038/s41592-019-0686-2 contributor: fullname: Virtanen – volume: 461 start-page: 3361 year: 2016 ident: 2023010423251991500_bib27 publication-title: MNRAS doi: 10.1093/mnras/stw1542 contributor: fullname: Lin – volume: 499 start-page: 2401 year: 2020 ident: 2023010423251991500_bib46 publication-title: MNRAS doi: 10.1093/mnras/staa2828 contributor: fullname: Trapp – volume: 377 start-page: L5 year: 2007 ident: 2023010423251991500_bib19 publication-title: MNRAS doi: 10.1111/j.1745-3933.2007.00292.x contributor: fullname: Gao – volume: 863 start-page: 92 year: 2018 ident: 2023010423251991500_bib2 publication-title: ApJ doi: 10.3847/1538-4357/aacc73 contributor: fullname: Becker – volume: 803 start-page: 34 year: 2015 ident: 2023010423251991500_bib6 publication-title: ApJ doi: 10.1088/0004-637X/803/1/34 contributor: fullname: Bouwens – volume: 450 start-page: 3032 year: 2015 ident: 2023010423251991500_bib31 publication-title: MNRAS doi: 10.1093/mnras/stv780 contributor: fullname: McLeod – volume: 904 start-page: 144 year: 2020 ident: 2023010423251991500_bib24 publication-title: ApJ doi: 10.3847/1538-4357/abbd44 contributor: fullname: Jung – volume: 860 start-page: 155 year: 2018 ident: 2023010423251991500_bib13 publication-title: ApJ doi: 10.3847/1538-4357/aac2d6 contributor: fullname: Davies – volume: 465 start-page: 608 year: 1996 ident: 2023010423251991500_bib42 publication-title: ApJ doi: 10.1086/177446 contributor: fullname: Thoul – volume: 479 start-page: 5184 year: 2018 ident: 2023010423251991500_bib1 publication-title: MNRAS doi: 10.1093/mnras/sty1820 contributor: fullname: Atek – volume: 880 start-page: 25 year: 2019 ident: 2023010423251991500_bib8 publication-title: ApJ doi: 10.3847/1538-4357/ab24c5 contributor: fullname: Bouwens – volume: 502 start-page: 6044 year: 2021 ident: 2023010423251991500_bib14 publication-title: MNRAS doi: 10.1093/mnras/stab432 contributor: fullname: Endsley – volume: 506 start-page: 202 year: 2021 ident: 2023010423251991500_bib47 publication-title: MNRAS doi: 10.1093/mnras/stab1229 contributor: fullname: Ucci – volume: 162 start-page: 47 year: 2021 ident: 2023010423251991500_bib7 publication-title: AJ doi: 10.3847/1538-3881/abf83e contributor: fullname: Bouwens – volume: 452 start-page: 1817 year: 2015 ident: 2023010423251991500_bib9 publication-title: MNRAS doi: 10.1093/mnras/stv1403 contributor: fullname: Bowler – volume: 444 start-page: 503 year: 2014 ident: 2023010423251991500_bib35 publication-title: MNRAS doi: 10.1093/mnras/stu1412 contributor: fullname: Noh – volume: 855 start-page: 105 year: 2018 ident: 2023010423251991500_bib38 publication-title: ApJ doi: 10.3847/1538-4357/aab03f contributor: fullname: Oesch – volume: 472 start-page: 1576 year: 2017 ident: 2023010423251991500_bib18 publication-title: MNRAS doi: 10.1093/mnras/stx2132 contributor: fullname: Furlanetto – volume: 594 start-page: A13 year: 2016 ident: 2023010423251991500_bib40 publication-title: A&A doi: 10.1051/0004-6361/201525830 contributor: fullname: Planck Collaboration XIII – volume: 844 start-page: L23 year: 2017 ident: 2023010423251991500_bib10 publication-title: ApJ doi: 10.3847/2041-8213/aa7e7b contributor: fullname: Chiang – volume: 813 start-page: 54 year: 2015 ident: 2023010423251991500_bib44 publication-title: ApJ doi: 10.1088/0004-637X/813/1/54 contributor: fullname: Trac – volume: 262 start-page: 627 year: 1993 ident: 2023010423251991500_bib26 publication-title: MNRAS doi: 10.1093/mnras/262.3.627 contributor: fullname: Lacey – volume: 808 start-page: 104 year: 2015 ident: 2023010423251991500_bib37 publication-title: ApJ doi: 10.1088/0004-637X/808/1/104 contributor: fullname: Oesch |
SSID | ssj0004326 |
Score | 2.4758072 |
Snippet | ABSTRACT
Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy surveys at $z \gtrsim 6$, but that same structure will... Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy surveys at $z \gtrsim 6$, but that same structure will also provide... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Publisher |
StartPage | 4844 |
SubjectTerms | Clustering Galaxies James Webb Space Telescope Large scale structure of the universe Luminosity Noise prediction Space telescopes |
Title | A framework for simultaneously measuring field densities and the high-z luminosity function |
URI | https://www.proquest.com/docview/3128026561 |
Volume | 510 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb5RAFJ5s24sXo1XT1WomxuiBkO4ywA5HrLtpTPRibWo8EGCGdJMWNsvuof71fvOTboxaD14IC-wE5n28X3zzHiFvJrMmSrloQviqEgFKVoWlFFEoYJpiBoOXSZVwO_sy-3zJP8zj-WjkegsOx_6rpHEMslYrZ_9B2n5QHMA-ZI4tpI7tveSeB43jW2kKYb9UnMGylQjxr2-DG50T1PRJxV0LhCKwq6KqnkqpChiHPwIorWXbacaGsn1efq77U9durjBe2yn2XO-oBiYbkfcqwd6ZSgSWF-pTBOtytTIaySdoF1vNud3olk6BabQ2MBm_2ZT2R9z1VWctrU1UIMb1TK0_LYC8q5xZAuVsda80-liT8DLTmMUp7MQSYZd30xFa_cbcFJO0pjzmpmj5L2bClNC6addq0dwCbnjFuL3V3eLbv794jxxE0G1QrQf5-8uLi2ExLtM9_vzT-Eqh7ESPceJG2PGEdlZXOndA-zjnj8hDG5zQ3KDqMRnJ9pAcOWne0rdU75tsWH9Ixp8QcnVr_WUGJ0-vl4h_9K8n5HtOPRApZEJ3gUg9EKkGIvVApAAiBZaoASIdgEgdEJ-Sr4v5-elZaDt5hDW8pE04U3UrK3i32YRXnKcNExMYgplMs0R9FxYpZCq4KHlWlnFTVqrsYVpF9RRXVs2UPSP7bdfKI0KTqM4E_iRE3MQ4U0ZJU8uMZwKxf1lHY_LOzWqxMgVbCkO0YIWe_8LN_5i8xqT_9aJjJ5PCvuV9weDUTSJEQtPn9xnjBXkwvA_HZH-z3sqXZK8X21cWPD8Bc_KoQA |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+for+simultaneously+measuring+field+densities+and+the+high-z+luminosity+function&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Trapp%2C+A+C&rft.au=Furlanetto%2C+Steven+R&rft.au=Yang%2C+Jinghong&rft.date=2022-03-01&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=510&rft.issue=4&rft.spage=4844&rft.epage=4856&rft_id=info:doi/10.1093%2Fmnras%2Fstab3801&rft.externalDocID=10.1093%2Fmnras%2Fstab3801 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |