New terahertz dielectric spectroscopy for the study of aqueous solutions

We present the development of a high precision, tunable far-infrared (terahertz) frequency-domain dielectric spectrometer for studying the dynamics of biomolecules in aqueous solutions in the gigahertz-to-terahertz frequency. As an important benchmark system, we report on the measurements of the abs...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments Vol. 86; no. 12; p. 123105
Main Authors: George, Deepu K, Charkhesht, Ali, Vinh, N Q
Format: Journal Article
Language:English
Published: United States 01-12-2015
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present the development of a high precision, tunable far-infrared (terahertz) frequency-domain dielectric spectrometer for studying the dynamics of biomolecules in aqueous solutions in the gigahertz-to-terahertz frequency. As an important benchmark system, we report on the measurements of the absorption and refractive index for liquid water in the frequency range from 5 GHz to 1.12 THz (0.17-37.36 cm(-1) or 0.268-60 mm). The system provides a coherent radiation source with power up to 20 mW in the gigahertz-to-terahertz region. The dynamic range of our instrument reaches 10(12) and the system achieves a spectral resolution of less than 100 Hz. The temperature of samples can be controlled precisely with error bars of ±0.02 °C from 0 °C to 90 °C. Given these attributes, our spectrometer provides unique capabilities for the accurate measurement of even very strongly absorbing materials such as aqueous solutions.
ISSN:1089-7623
DOI:10.1063/1.4936986