Texture Classification Using Sparse Frame-Based Representations

A new method for supervised texture classification, denoted by frame texture classification method (FTCM), is proposed. The method is based on a deterministic texture model in which a small image block, taken from a texture region, is modeled as a sparse linear combination of frame elements. FTCM ha...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on advances in signal processing Vol. 2006; no. 1
Main Authors: Skretting, Karl, Husøy, JohnHåkon
Format: Journal Article
Language:English
Published: 01-01-2006
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new method for supervised texture classification, denoted by frame texture classification method (FTCM), is proposed. The method is based on a deterministic texture model in which a small image block, taken from a texture region, is modeled as a sparse linear combination of frame elements. FTCM has two phases. In the design phase a frame is trained for each texture class based on given texture example images. The design method is an iterative procedure in which the representation error, given a sparseness constraint, is minimized. In the classification phase each pixel in a test image is labeled by analyzing its spatial neighborhood. This block is represented by each of the frames designed for the texture classes under consideration, and the frame giving the best representation gives the class. The FTCM is applied to nine test images of natural textures commonly used in other texture classification work, yielding excellent overall performance.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1687-6180
1687-6172
1687-6180
DOI:10.1155/ASP/2006/52561