Community Detection in Very High-Resolution Meteorological Networks

Several complex dynamical systems are embedded in geographical space. Geographical data have proven its importance in several domains. For instance, the formation and scrutiny of climate networks have emerged as a new research topic in environmental literature. However, there is still a lack of inve...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters Vol. 17; no. 11; pp. 2007 - 2010
Main Authors: Ceron, Wilson, Santos, Leonardo B. L., Neto, Giovanni Dolif, Quiles, Marcos G., Candido, Onofre A.
Format: Journal Article
Language:English
Published: Piscataway IEEE 01-11-2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Several complex dynamical systems are embedded in geographical space. Geographical data have proven its importance in several domains. For instance, the formation and scrutiny of climate networks have emerged as a new research topic in environmental literature. However, there is still a lack of investigations of scenarios with very high spatial resolution, such as those considering meteorological data. Recently, a new concept, named (geo)graphs, was proposed. (Geo)graphs are graphs, or networks, in which the nodes have an assigned geographical location. Besides embedding nodes into space, these graphs are readily manipulated with a geographical information system, and, thus, represent a suitable tool for dealing with very high-resolution scenarios, such as meteorological data. In this context, here, we apply a (geo)graph approach to model a radar-derived rainfall data set. We represent the nodes as a point-type shapefile and the edges as a line-type shapefile, which are standard file types in geoinformatics. After, we analyze the topological properties of a family of (geo)graphs considering distinct thresholds. The analysis of these networks reveals a spatially well-defined community structure, which, interestingly, is consistent with topographical/altimetric and land use/land cover data. These results show the relation between geographical properties and the topological structure of the network might be applied to different ecological studies, from sustainable development to urban planning and disaster risk reduction.
AbstractList Several complex dynamical systems are embedded in geographical space. Geographical data have proven its importance in several domains. For instance, the formation and scrutiny of climate networks have emerged as a new research topic in environmental literature. However, there is still a lack of investigations of scenarios with very high spatial resolution, such as those considering meteorological data. Recently, a new concept, named (geo)graphs, was proposed. (Geo)graphs are graphs, or networks, in which the nodes have an assigned geographical location. Besides embedding nodes into space, these graphs are readily manipulated with a geographical information system, and, thus, represent a suitable tool for dealing with very high-resolution scenarios, such as meteorological data. In this context, here, we apply a (geo)graph approach to model a radar-derived rainfall data set. We represent the nodes as a point-type shapefile and the edges as a line-type shapefile, which are standard file types in geoinformatics. After, we analyze the topological properties of a family of (geo)graphs considering distinct thresholds. The analysis of these networks reveals a spatially well-defined community structure, which, interestingly, is consistent with topographical/altimetric and land use/land cover data. These results show the relation between geographical properties and the topological structure of the network might be applied to different ecological studies, from sustainable development to urban planning and disaster risk reduction.
Author Ceron, Wilson
Santos, Leonardo B. L.
Neto, Giovanni Dolif
Quiles, Marcos G.
Candido, Onofre A.
Author_xml – sequence: 1
  givenname: Wilson
  surname: Ceron
  fullname: Ceron, Wilson
  organization: Institute of Science and Technology, Federal University of Sao Paulo, São José dos Campos, Brazil
– sequence: 2
  givenname: Leonardo B. L.
  orcidid: 0000-0002-3129-772X
  surname: Santos
  fullname: Santos, Leonardo B. L.
  email: santoslbl@gmail.com
  organization: Center for Monitoring and Early Warning of Natural Disasters, São José dos Campos, Brazil
– sequence: 3
  givenname: Giovanni Dolif
  surname: Neto
  fullname: Neto, Giovanni Dolif
  organization: Center for Monitoring and Early Warning of Natural Disasters, São José dos Campos, Brazil
– sequence: 4
  givenname: Marcos G.
  orcidid: 0000-0001-8147-554X
  surname: Quiles
  fullname: Quiles, Marcos G.
  organization: Institute of Science and Technology, Federal University of Sao Paulo, São José dos Campos, Brazil
– sequence: 5
  givenname: Onofre A.
  surname: Candido
  fullname: Candido, Onofre A.
  organization: Institute of Science and Technology, Federal University of Sao Paulo, São José dos Campos, Brazil
BookMark eNo9kE1Lw0AQhhepYK3-APES8Jy6X5PsHiVqK1SF-oG3Jd1Ma2qarbsJ0n9vYounGYbnfQeeUzKoXY2EXDA6Zozq69lk_jLmlOkx1wBA1REZMgAVU0jZoN8lxKDVxwk5DWFNKZdKpUOSZW6zaeuy2UW32KBtSldHZR29o99F03L1Gc8xuKr9uz92hPOucqvS5lX0hM2P81_hjBwv8yrg-WGOyNv93Ws2jWfPk4fsZhZbIVkTc6sF5roASCxnRS6oEFbohBUcZKIWC27lkimt9VIjhYXSVMq8AImCpzznYkSu9r1b775bDI1Zu9bX3UvDJSTAuxbZUWxPWe9C8Lg0W19ucr8zjJreleldmd6VObjqMpf7TImI_7zSgiYsFb-8UGZx
CODEN IGRSBY
CitedBy_id crossref_primary_10_1038_s41598_021_93122_x
crossref_primary_10_1109_JSTARS_2023_3342985
crossref_primary_10_1111_tgis_12962
crossref_primary_10_1371_journal_pone_0248126
crossref_primary_10_3389_fphy_2023_1064122
crossref_primary_10_1007_s41109_022_00476_w
Cites_doi 10.1093/acprof:oso/9780199206650.001.0001
10.1093/acprof:oso/9780199591756.001.0001
10.1002/2017GL076834
10.1016/j.physa.2003.10.045
10.1016/j.physrep.2009.11.002
10.1080/00018730601170527
10.1007/11569596_31
10.1109/LGRS.2017.2726524
10.1007/s00704-009-0207-9
10.1140/epjst/e2009-01098-2
10.1080/00018732.2011.572452
10.1038/srep00666
10.1073/pnas.122653799
10.1175/1520-0450(2001)040<2129:AISFCS>2.0.CO;2
10.1029/2011RG000365
10.1002/qj.67
10.1007/s00382-015-2479-3
10.5194/bg-16-2369-2019
10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2019.2955508
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 2010
ExternalDocumentID 10_1109_LGRS_2019_2955508
8930617
Genre orig-research
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft–International Research Training Groups (DFG-IRTG)
  grantid: 1740/2
  funderid: 10.13039/501100001659
– fundername: CNPq
  grantid: 420338/2018-7; 313426/2018-0; 434886/2018-1
  funderid: 10.13039/501100003593
– fundername: São Paulo Research Foundation (FAPESP)
  grantid: 2015/50122-0; 2016/16291-2; 2018/06205-7
  funderid: 10.13039/501100001807
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AIBXA
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c341t-2c93ea9d556c21da3033c3961d25468bb2c4f18999f9e05b89044ad54e3272a23
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Thu Oct 10 16:50:57 EDT 2024
Fri Aug 23 03:19:49 EDT 2024
Mon Nov 04 11:50:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-2c93ea9d556c21da3033c3961d25468bb2c4f18999f9e05b89044ad54e3272a23
ORCID 0000-0002-3129-772X
0000-0001-8147-554X
PQID 2456524684
PQPubID 75725
PageCount 4
ParticipantIDs ieee_primary_8930617
proquest_journals_2456524684
crossref_primary_10_1109_LGRS_2019_2955508
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref15) 2019
ref24
ref23
ref14
ref20
ref11
ref22
ref10
ref21
(ref19) 2016
barabsi (ref6) 2016
santos (ref12) 2017
ref2
ref1
ref17
ref18
ref8
ref7
ref9
ref4
ref3
ref5
(ref16) 2019
References_xml – year: 2016
  ident: ref6
  publication-title: Network Science
  contributor:
    fullname: barabsi
– ident: ref5
  doi: 10.1093/acprof:oso/9780199206650.001.0001
– ident: ref8
  doi: 10.1093/acprof:oso/9780199591756.001.0001
– year: 2017
  ident: ref12
  article-title: (Geo) graphs-complex networks as a shapefile of nodes and a shapefile of edges for different applications
  publication-title: arXiv 1711 05879
  contributor:
    fullname: santos
– ident: ref14
  doi: 10.1002/2017GL076834
– ident: ref1
  doi: 10.1016/j.physa.2003.10.045
– ident: ref10
  doi: 10.1016/j.physrep.2009.11.002
– year: 2019
  ident: ref15
  publication-title: SRTM Elevation Data
– ident: ref7
  doi: 10.1080/00018730601170527
– ident: ref20
  doi: 10.1007/11569596_31
– ident: ref24
  doi: 10.1109/LGRS.2017.2726524
– ident: ref17
  doi: 10.1007/s00704-009-0207-9
– ident: ref3
  doi: 10.1140/epjst/e2009-01098-2
– ident: ref2
  doi: 10.1080/00018732.2011.572452
– ident: ref11
  doi: 10.1038/srep00666
– ident: ref9
  doi: 10.1073/pnas.122653799
– year: 2016
  ident: ref19
  publication-title: Software Manual Rainbow5 Products and Algorithms
– year: 2019
  ident: ref16
  publication-title: Mapbiomas Land Use Data
– ident: ref18
  doi: 10.1175/1520-0450(2001)040<2129:AISFCS>2.0.CO;2
– ident: ref21
  doi: 10.1029/2011RG000365
– ident: ref23
  doi: 10.1002/qj.67
– ident: ref4
  doi: 10.1007/s00382-015-2479-3
– ident: ref22
  doi: 10.5194/bg-16-2369-2019
– ident: ref13
  doi: 10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2
SSID ssj0024887
Score 2.3601239
Snippet Several complex dynamical systems are embedded in geographical space. Geographical data have proven its importance in several domains. For instance, the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 2007
SubjectTerms Clustering methods
Community structure
complex networks
Correlation
Disaster management
Ecological studies
Embedding
Emergency preparedness
Geographic information systems
Geographical distribution
Geographical locations
Graphs
High resolution
Information systems
Land cover
Land surface
Land use
Meteorological data
Meteorological networks
meteorological radar
Meteorology
Networks
Nodes
Properties
Radar
Radar data
Radar remote sensing
Rain
Rainfall
Rainfall data
Resolution
Risk management
Risk reduction
Spatial discrimination
Spatial resolution
Surface topography
Surface treatment
Sustainable development
Topology
Urban planning
Title Community Detection in Very High-Resolution Meteorological Networks
URI https://ieeexplore.ieee.org/document/8930617
https://www.proquest.com/docview/2456524684
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RSggWHi2IQkEZmBBuEztO4hH1OUAHCqhblNgXwZKiNh3y77GdtAjBwpbBkazPj-_O990dwG0aJCHjAokXuUh8DChJMo8TNwsRGWYZzUxEdzoPZ4toODJlcu53uTCIaMVn2DOfNpavlnJjnsr6mlsN4zagEYqoytX6rqsX2WZ4xiIgXESLOoLpuaL_OHmeGxGX6FHBtUUe_eAg21Tl101s6WV8_L-JncBRbUY6D9W6n8Ie5i04qDuav5ct2J_Ylr1lGwZ1DkhROkMsrPIqdz5y5w1XpWNkHsQ84Vcb0HnSI5ar7YXozCqR-PoMXsejl8GU1K0TiNS0VBAqBcNEKM4DST2VaKJikonAU6b-fZSmVPqZp30tkQl0eRoJ1_cTxX1kNKQJZefQzJc5XoDjewkPlQqEJ_VpD7VFkUjt1iompEszDDpwtwUz_qwqZMTWs3BFbJCPDfJxjXwH2ga93cAauA50t_DH9RlaxzYkS_Vs_cu__7qCQ2q8X5sZ2IVmsdrgNTTWanNj98YXPDW1wA
link.rule.ids 315,782,786,798,27935,27936,54770
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RIlQWHi2IQoEMTAi3iRMn8Yj6RLQdaEHdotS-CJYU9THk32M7aRGChS2DI1mfH9-d77s7gLu5Hwcu40ic0EbioU9JnDiM2EmA6GKS0ERHdAeTYDwLO11dJudhlwuDiEZ8hk39aWL5ciE2-qmspbhVM24J9pkXBHaerfVdWS807fC0TUAYD2dFDNOxeWvYf5loGRdvUs6UTR7-YCHTVuXXXWwIpnf8v6mdwFFhSFqP-cqfwh6mVagUPc3fsyoc9E3T3qwG7SILZJ1ZHVwb7VVqfaTWGy4zSws9iH7Ez7egNVIjFsvtlWiNc5n46gxee91pe0CK5glEKGJaEyq4izGXjPmCOjJWVOUKl_uO1BXww_mcCi9xlLfFE442m4fc9rxYMg9dGtCYuudQThcpXoDlOTELpPS5I9R5D5RNEQvl2EqXC5sm6Nfhfgtm9JnXyIiMb2HzSCMfaeSjAvk61DR6u4EFcHVobOGPilO0ikxQlqrZepd__3ULlcF0NIyGT-PnKzik2hc2eYINKK-XG7yG0kpubsw--QLww7kL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Community+Detection+in+Very+High-Resolution+Meteorological+Networks&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Ceron%2C+Wilson&rft.au=Santos%2C+Leonardo+B.+L.&rft.au=Neto%2C+Giovanni+Dolif&rft.au=Quiles%2C+Marcos+G.&rft.date=2020-11-01&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=17&rft.issue=11&rft.spage=2007&rft.epage=2010&rft_id=info:doi/10.1109%2FLGRS.2019.2955508&rft.externalDocID=8930617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon