Community Detection in Very High-Resolution Meteorological Networks
Several complex dynamical systems are embedded in geographical space. Geographical data have proven its importance in several domains. For instance, the formation and scrutiny of climate networks have emerged as a new research topic in environmental literature. However, there is still a lack of inve...
Saved in:
Published in: | IEEE geoscience and remote sensing letters Vol. 17; no. 11; pp. 2007 - 2010 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
01-11-2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Several complex dynamical systems are embedded in geographical space. Geographical data have proven its importance in several domains. For instance, the formation and scrutiny of climate networks have emerged as a new research topic in environmental literature. However, there is still a lack of investigations of scenarios with very high spatial resolution, such as those considering meteorological data. Recently, a new concept, named (geo)graphs, was proposed. (Geo)graphs are graphs, or networks, in which the nodes have an assigned geographical location. Besides embedding nodes into space, these graphs are readily manipulated with a geographical information system, and, thus, represent a suitable tool for dealing with very high-resolution scenarios, such as meteorological data. In this context, here, we apply a (geo)graph approach to model a radar-derived rainfall data set. We represent the nodes as a point-type shapefile and the edges as a line-type shapefile, which are standard file types in geoinformatics. After, we analyze the topological properties of a family of (geo)graphs considering distinct thresholds. The analysis of these networks reveals a spatially well-defined community structure, which, interestingly, is consistent with topographical/altimetric and land use/land cover data. These results show the relation between geographical properties and the topological structure of the network might be applied to different ecological studies, from sustainable development to urban planning and disaster risk reduction. |
---|---|
AbstractList | Several complex dynamical systems are embedded in geographical space. Geographical data have proven its importance in several domains. For instance, the formation and scrutiny of climate networks have emerged as a new research topic in environmental literature. However, there is still a lack of investigations of scenarios with very high spatial resolution, such as those considering meteorological data. Recently, a new concept, named (geo)graphs, was proposed. (Geo)graphs are graphs, or networks, in which the nodes have an assigned geographical location. Besides embedding nodes into space, these graphs are readily manipulated with a geographical information system, and, thus, represent a suitable tool for dealing with very high-resolution scenarios, such as meteorological data. In this context, here, we apply a (geo)graph approach to model a radar-derived rainfall data set. We represent the nodes as a point-type shapefile and the edges as a line-type shapefile, which are standard file types in geoinformatics. After, we analyze the topological properties of a family of (geo)graphs considering distinct thresholds. The analysis of these networks reveals a spatially well-defined community structure, which, interestingly, is consistent with topographical/altimetric and land use/land cover data. These results show the relation between geographical properties and the topological structure of the network might be applied to different ecological studies, from sustainable development to urban planning and disaster risk reduction. |
Author | Ceron, Wilson Santos, Leonardo B. L. Neto, Giovanni Dolif Quiles, Marcos G. Candido, Onofre A. |
Author_xml | – sequence: 1 givenname: Wilson surname: Ceron fullname: Ceron, Wilson organization: Institute of Science and Technology, Federal University of Sao Paulo, São José dos Campos, Brazil – sequence: 2 givenname: Leonardo B. L. orcidid: 0000-0002-3129-772X surname: Santos fullname: Santos, Leonardo B. L. email: santoslbl@gmail.com organization: Center for Monitoring and Early Warning of Natural Disasters, São José dos Campos, Brazil – sequence: 3 givenname: Giovanni Dolif surname: Neto fullname: Neto, Giovanni Dolif organization: Center for Monitoring and Early Warning of Natural Disasters, São José dos Campos, Brazil – sequence: 4 givenname: Marcos G. orcidid: 0000-0001-8147-554X surname: Quiles fullname: Quiles, Marcos G. organization: Institute of Science and Technology, Federal University of Sao Paulo, São José dos Campos, Brazil – sequence: 5 givenname: Onofre A. surname: Candido fullname: Candido, Onofre A. organization: Institute of Science and Technology, Federal University of Sao Paulo, São José dos Campos, Brazil |
BookMark | eNo9kE1Lw0AQhhepYK3-APES8Jy6X5PsHiVqK1SF-oG3Jd1Ma2qarbsJ0n9vYounGYbnfQeeUzKoXY2EXDA6Zozq69lk_jLmlOkx1wBA1REZMgAVU0jZoN8lxKDVxwk5DWFNKZdKpUOSZW6zaeuy2UW32KBtSldHZR29o99F03L1Gc8xuKr9uz92hPOucqvS5lX0hM2P81_hjBwv8yrg-WGOyNv93Ws2jWfPk4fsZhZbIVkTc6sF5roASCxnRS6oEFbohBUcZKIWC27lkimt9VIjhYXSVMq8AImCpzznYkSu9r1b775bDI1Zu9bX3UvDJSTAuxbZUWxPWe9C8Lg0W19ucr8zjJreleldmd6VObjqMpf7TImI_7zSgiYsFb-8UGZx |
CODEN | IGRSBY |
CitedBy_id | crossref_primary_10_1038_s41598_021_93122_x crossref_primary_10_1109_JSTARS_2023_3342985 crossref_primary_10_1111_tgis_12962 crossref_primary_10_1371_journal_pone_0248126 crossref_primary_10_3389_fphy_2023_1064122 crossref_primary_10_1007_s41109_022_00476_w |
Cites_doi | 10.1093/acprof:oso/9780199206650.001.0001 10.1093/acprof:oso/9780199591756.001.0001 10.1002/2017GL076834 10.1016/j.physa.2003.10.045 10.1016/j.physrep.2009.11.002 10.1080/00018730601170527 10.1007/11569596_31 10.1109/LGRS.2017.2726524 10.1007/s00704-009-0207-9 10.1140/epjst/e2009-01098-2 10.1080/00018732.2011.572452 10.1038/srep00666 10.1073/pnas.122653799 10.1175/1520-0450(2001)040<2129:AISFCS>2.0.CO;2 10.1029/2011RG000365 10.1002/qj.67 10.1007/s00382-015-2479-3 10.5194/bg-16-2369-2019 10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
DOI | 10.1109/LGRS.2019.2955508 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1558-0571 |
EndPage | 2010 |
ExternalDocumentID | 10_1109_LGRS_2019_2955508 8930617 |
Genre | orig-research |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft–International Research Training Groups (DFG-IRTG) grantid: 1740/2 funderid: 10.13039/501100001659 – fundername: CNPq grantid: 420338/2018-7; 313426/2018-0; 434886/2018-1 funderid: 10.13039/501100003593 – fundername: São Paulo Research Foundation (FAPESP) grantid: 2015/50122-0; 2016/16291-2; 2018/06205-7 funderid: 10.13039/501100001807 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABQJQ ACGFO ACIWK AENEX AETIX AFRAH AIBXA AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c341t-2c93ea9d556c21da3033c3961d25468bb2c4f18999f9e05b89044ad54e3272a23 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Thu Oct 10 16:50:57 EDT 2024 Fri Aug 23 03:19:49 EDT 2024 Mon Nov 04 11:50:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c341t-2c93ea9d556c21da3033c3961d25468bb2c4f18999f9e05b89044ad54e3272a23 |
ORCID | 0000-0002-3129-772X 0000-0001-8147-554X |
PQID | 2456524684 |
PQPubID | 75725 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8930617 proquest_journals_2456524684 crossref_primary_10_1109_LGRS_2019_2955508 |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 (ref15) 2019 ref24 ref23 ref14 ref20 ref11 ref22 ref10 ref21 (ref19) 2016 barabsi (ref6) 2016 santos (ref12) 2017 ref2 ref1 ref17 ref18 ref8 ref7 ref9 ref4 ref3 ref5 (ref16) 2019 |
References_xml | – year: 2016 ident: ref6 publication-title: Network Science contributor: fullname: barabsi – ident: ref5 doi: 10.1093/acprof:oso/9780199206650.001.0001 – ident: ref8 doi: 10.1093/acprof:oso/9780199591756.001.0001 – year: 2017 ident: ref12 article-title: (Geo) graphs-complex networks as a shapefile of nodes and a shapefile of edges for different applications publication-title: arXiv 1711 05879 contributor: fullname: santos – ident: ref14 doi: 10.1002/2017GL076834 – ident: ref1 doi: 10.1016/j.physa.2003.10.045 – ident: ref10 doi: 10.1016/j.physrep.2009.11.002 – year: 2019 ident: ref15 publication-title: SRTM Elevation Data – ident: ref7 doi: 10.1080/00018730601170527 – ident: ref20 doi: 10.1007/11569596_31 – ident: ref24 doi: 10.1109/LGRS.2017.2726524 – ident: ref17 doi: 10.1007/s00704-009-0207-9 – ident: ref3 doi: 10.1140/epjst/e2009-01098-2 – ident: ref2 doi: 10.1080/00018732.2011.572452 – ident: ref11 doi: 10.1038/srep00666 – ident: ref9 doi: 10.1073/pnas.122653799 – year: 2016 ident: ref19 publication-title: Software Manual Rainbow5 Products and Algorithms – year: 2019 ident: ref16 publication-title: Mapbiomas Land Use Data – ident: ref18 doi: 10.1175/1520-0450(2001)040<2129:AISFCS>2.0.CO;2 – ident: ref21 doi: 10.1029/2011RG000365 – ident: ref23 doi: 10.1002/qj.67 – ident: ref4 doi: 10.1007/s00382-015-2479-3 – ident: ref22 doi: 10.5194/bg-16-2369-2019 – ident: ref13 doi: 10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2 |
SSID | ssj0024887 |
Score | 2.3601239 |
Snippet | Several complex dynamical systems are embedded in geographical space. Geographical data have proven its importance in several domains. For instance, the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 2007 |
SubjectTerms | Clustering methods Community structure complex networks Correlation Disaster management Ecological studies Embedding Emergency preparedness Geographic information systems Geographical distribution Geographical locations Graphs High resolution Information systems Land cover Land surface Land use Meteorological data Meteorological networks meteorological radar Meteorology Networks Nodes Properties Radar Radar data Radar remote sensing Rain Rainfall Rainfall data Resolution Risk management Risk reduction Spatial discrimination Spatial resolution Surface topography Surface treatment Sustainable development Topology Urban planning |
Title | Community Detection in Very High-Resolution Meteorological Networks |
URI | https://ieeexplore.ieee.org/document/8930617 https://www.proquest.com/docview/2456524684 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RSggWHi2IQkEZmBBuEztO4hH1OUAHCqhblNgXwZKiNh3y77GdtAjBwpbBkazPj-_O990dwG0aJCHjAokXuUh8DChJMo8TNwsRGWYZzUxEdzoPZ4toODJlcu53uTCIaMVn2DOfNpavlnJjnsr6mlsN4zagEYqoytX6rqsX2WZ4xiIgXESLOoLpuaL_OHmeGxGX6FHBtUUe_eAg21Tl101s6WV8_L-JncBRbUY6D9W6n8Ie5i04qDuav5ct2J_Ylr1lGwZ1DkhROkMsrPIqdz5y5w1XpWNkHsQ84Vcb0HnSI5ar7YXozCqR-PoMXsejl8GU1K0TiNS0VBAqBcNEKM4DST2VaKJikonAU6b-fZSmVPqZp30tkQl0eRoJ1_cTxX1kNKQJZefQzJc5XoDjewkPlQqEJ_VpD7VFkUjt1iompEszDDpwtwUz_qwqZMTWs3BFbJCPDfJxjXwH2ga93cAauA50t_DH9RlaxzYkS_Vs_cu__7qCQ2q8X5sZ2IVmsdrgNTTWanNj98YXPDW1wA |
link.rule.ids | 315,782,786,798,27935,27936,54770 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RIlQWHi2IQoEMTAi3iRMn8Yj6RLQdaEHdotS-CJYU9THk32M7aRGChS2DI1mfH9-d77s7gLu5Hwcu40ic0EbioU9JnDiM2EmA6GKS0ERHdAeTYDwLO11dJudhlwuDiEZ8hk39aWL5ciE2-qmspbhVM24J9pkXBHaerfVdWS807fC0TUAYD2dFDNOxeWvYf5loGRdvUs6UTR7-YCHTVuXXXWwIpnf8v6mdwFFhSFqP-cqfwh6mVagUPc3fsyoc9E3T3qwG7SILZJ1ZHVwb7VVqfaTWGy4zSws9iH7Ez7egNVIjFsvtlWiNc5n46gxee91pe0CK5glEKGJaEyq4izGXjPmCOjJWVOUKl_uO1BXww_mcCi9xlLfFE442m4fc9rxYMg9dGtCYuudQThcpXoDlOTELpPS5I9R5D5RNEQvl2EqXC5sm6Nfhfgtm9JnXyIiMb2HzSCMfaeSjAvk61DR6u4EFcHVobOGPilO0ikxQlqrZepd__3ULlcF0NIyGT-PnKzik2hc2eYINKK-XG7yG0kpubsw--QLww7kL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Community+Detection+in+Very+High-Resolution+Meteorological+Networks&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Ceron%2C+Wilson&rft.au=Santos%2C+Leonardo+B.+L.&rft.au=Neto%2C+Giovanni+Dolif&rft.au=Quiles%2C+Marcos+G.&rft.date=2020-11-01&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=17&rft.issue=11&rft.spage=2007&rft.epage=2010&rft_id=info:doi/10.1109%2FLGRS.2019.2955508&rft.externalDocID=8930617 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |