Choosing the right artificial intelligence solutions for your radiology department: key factors to consider

The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions for interpretative tasks. This paper provides radiology departments with a practical guide for selecting and integrating AI solutions, focusi...

Full description

Saved in:
Bibliographic Details
Published in:Diagnostic and interventional radiology (Ankara, Turkey) Vol. 30; no. 6; pp. 357 - 365
Main Authors: Alis, Deniz, Tanyel, Toygar, Meltem, Emine, Seker, Mustafa Ege, Seker, Delal, Karakaş, Hakkı Muammer, Karaarslan, Ercan, Öksüz, İlkay
Format: Journal Article
Language:English
Published: Turkey Galenos Publishing 06-11-2024
Galenos Publishing House
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions for interpretative tasks. This paper provides radiology departments with a practical guide for selecting and integrating AI solutions, focusing on interpretative tasks that require the active involvement of radiologists. Our approach is not to list available applications or review scientific evidence, as this information is readily available in previous studies; instead, we concentrate on the essential factors radiology departments must consider when choosing AI solutions. These factors include clinical relevance, performance and validation, implementation and integration, clinical usability, costs and return on investment, and regulations, security, and privacy. We illustrate each factor with hypothetical scenarios to provide a clearer understanding and practical relevance. Through our experience and literature review, we provide insights and a practical roadmap for radiologists to navigate the complex landscape of AI in radiology. We aim to assist in making informed decisions that enhance diagnostic precision, improve patient outcomes, and streamline workflows, thus contributing to the advancement of radiological practices and patient care.
AbstractList The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions for interpretative tasks. This paper provides radiology departments with a practical guide for selecting and integrating AI solutions, focusing on interpretative tasks that require the active involvement of radiologists. Our approach is not to list available applications or review scientific evidence, as this information is readily available in previous studies; instead, we concentrate on the essential factors radiology departments must consider when choosing AI solutions. These factors include clinical relevance, performance and validation, implementation and integration, clinical usability, costs and return on investment, and regulations, security, and privacy. We illustrate each factor with hypothetical scenarios to provide a clearer understanding and practical relevance. Through our experience and literature review, we provide insights and a practical roadmap for radiologists to navigate the complex landscape of AI in radiology. We aim to assist in making informed decisions that enhance diagnostic precision, improve patient outcomes, and streamline workflows, thus contributing to the advancement of radiological practices and patient care.
The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions for interpretative tasks. This paper provides radiology departments with a practical guide for selecting and integrating AI solutions, focusing on interpretative tasks that require the active involvement of radiologists. Our approach is not to list available applications or review scientific evidence, as this information is readily available in previous studies; instead, we concentrate on the essential factors radiology departments must consider when choosing AI solutions. These factors include clinical relevance, performance and validation, implementation and integration, clinical usability, costs and return on investment, and regulations, security, and privacy. We illustrate each factor with hypothetical scenarios to provide a clearer understanding and practical relevance. Through our experience and literature review, we provide insights and a practical roadmap for radiologists to navigate the complex landscape of AI in radiology. We aim to assist in making informed decisions that enhance diagnostic precision, improve patient outcomes, and streamline workflows, thus contributing to the advancement of radiological practices and patient care.The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions for interpretative tasks. This paper provides radiology departments with a practical guide for selecting and integrating AI solutions, focusing on interpretative tasks that require the active involvement of radiologists. Our approach is not to list available applications or review scientific evidence, as this information is readily available in previous studies; instead, we concentrate on the essential factors radiology departments must consider when choosing AI solutions. These factors include clinical relevance, performance and validation, implementation and integration, clinical usability, costs and return on investment, and regulations, security, and privacy. We illustrate each factor with hypothetical scenarios to provide a clearer understanding and practical relevance. Through our experience and literature review, we provide insights and a practical roadmap for radiologists to navigate the complex landscape of AI in radiology. We aim to assist in making informed decisions that enhance diagnostic precision, improve patient outcomes, and streamline workflows, thus contributing to the advancement of radiological practices and patient care.
Author Meltem, Emine
Alis, Deniz
Tanyel, Toygar
Seker, Mustafa Ege
Seker, Delal
Öksüz, İlkay
Karaarslan, Ercan
Karakaş, Hakkı Muammer
Author_xml – sequence: 1
  givenname: Deniz
  orcidid: 0000-0002-7045-1793
  surname: Alis
  fullname: Alis, Deniz
  organization: Acıbadem Mehmet Ali Aydınlar University Faculty of Medicine, Department of Radiology, İstanbul, Türkiye
– sequence: 2
  givenname: Toygar
  orcidid: 0000-0002-2421-6880
  surname: Tanyel
  fullname: Tanyel, Toygar
  organization: İstanbul Technical University, Biomedical Engineering Graduate Program, İstanbul, Türkiye
– sequence: 3
  givenname: Emine
  orcidid: 0000-0003-3927-321X
  surname: Meltem
  fullname: Meltem, Emine
  organization: University of Health Sciences Türkiye, İstanbul Training and Research Hospital, Clinic of Diagnostic and Interventional Radiology, İstanbul, Türkiye
– sequence: 4
  givenname: Mustafa Ege
  orcidid: 0000-0001-7664-5786
  surname: Seker
  fullname: Seker, Mustafa Ege
  organization: Acıbadem Mehmet Ali Aydınlar University Faculty of Medicine, Department of Radiology, İstanbul, Türkiye
– sequence: 5
  givenname: Delal
  orcidid: 0000-0002-6863-7150
  surname: Seker
  fullname: Seker, Delal
  organization: Dicle University Faculty of Engineering, Department of Electrical-Electronics Engineering, Diyarbakır, Türkiye
– sequence: 6
  givenname: Hakkı Muammer
  orcidid: 0000-0002-1328-8520
  surname: Karakaş
  fullname: Karakaş, Hakkı Muammer
  organization: University of Health Sciences, Clinic of Radiology, İstanbul, Türkiye
– sequence: 7
  givenname: Ercan
  orcidid: 0000-0002-4581-4273
  surname: Karaarslan
  fullname: Karaarslan, Ercan
  organization: Acıbadem Mehmet Ali Aydınlar University Faculty of Medicine, Department of Radiology, İstanbul, Türkiye
– sequence: 8
  givenname: İlkay
  orcidid: 0000-0001-6478-0534
  surname: Öksüz
  fullname: Öksüz, İlkay
  organization: İstanbul Technical University Faculty of Engineering, Department of Computer Engineering, İstanbul, Türkiye
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38682670$$D View this record in MEDLINE/PubMed
BookMark eNpVkUlvFDEQhS0URBY4c0M-cpmJ93ZzQWjEEikSFzhbXqp7nPTYg90daf49HiaJyKks-72vqvwu0VnKCRB6T8lasE5ch1jWjDCxZpwpqV-hC8qJXHFF2dnTWTN5ji5rvSNEyp6KN-ica6WZ6sgFut9sc64xjXjeAi5x3M7YljkO0Uc74ZhmmKY4QvKAa56WOeZU8ZALPuSl4GJDzFMeDzjAvvl2kOZP-B4OeLB-zqXiOWPfLDFAeYteD3aq8O6xXqHf377-2vxY3f78frP5crvyXFC6CpQR7qmWPhAXlNaUDaSX3IWeWRCWSd9r0DL0EqjrnBwUh67TvVScetvxK3Rz4oZs78y-xJ0tB5NtNP8uchnNcUU_gXFAeCcapXdMDNo5SWlgfStBUcWgsT6fWPvF7SD4tl-x0wvoy5cUt2bMD4ZS2SZiqhE-PhJK_rNAnc0uVt9-1SbISzWcCN0pLThp0uuT1Jdca4HhuQ8l5pi3aXmbY97mlHdzfPh_vGf9U8D8L5kzqmk
CitedBy_id crossref_primary_10_1007_s00330_024_10873_7
ContentType Journal Article
Copyright Copyright© Author(s) - Available online at dirjournal.org. 2024 Diagnostic and Interventional Radiology
Copyright_xml – notice: Copyright© Author(s) - Available online at dirjournal.org. 2024 Diagnostic and Interventional Radiology
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.4274/dir.2024.232658
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1305-3612
EndPage 365
ExternalDocumentID oai_doaj_org_article_be03741b79b24f8bb511d29b51d6162e
10_4274_dir_2024_232658
38682670
Genre Journal Article
GroupedDBID ---
29G
2WC
3V.
53G
5GY
6PF
7RV
7X7
8FE
8FG
8FI
AAWTL
ADBBV
AENEX
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BAWUL
BENPR
BGLVJ
BKEYQ
BMSDO
BPHCQ
BVXVI
DIK
EBS
EDSIH
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IHR
INH
ITC
M1P
NAPCQ
NPM
OK1
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
UKHRP
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c3411-d1203c185cd0bd68812f0953bd92ae4a25c98e85d95e1b7b5f63e77895631ca73
IEDL.DBID RPM
ISSN 1305-3825
1305-3612
IngestDate Mon Nov 18 19:23:16 EST 2024
Wed Nov 27 05:24:23 EST 2024
Thu Nov 07 17:16:22 EST 2024
Wed Nov 20 13:17:21 EST 2024
Sat Nov 02 11:58:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Radiology
data security in healthcare
computer-assisted healthcare economics and organizations
clinical decision-making
regulatory compliance in medicine
artificial intelligence
Language English
License Content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3411-d1203c185cd0bd68812f0953bd92ae4a25c98e85d95e1b7b5f63e77895631ca73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6863-7150
0000-0002-7045-1793
0000-0003-3927-321X
0000-0002-4581-4273
0000-0001-6478-0534
0000-0002-1328-8520
0000-0002-2421-6880
0000-0001-7664-5786
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589526/
PMID 38682670
PQID 3048768430
PQPubID 23479
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_be03741b79b24f8bb511d29b51d6162e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11589526
proquest_miscellaneous_3048768430
crossref_primary_10_4274_dir_2024_232658
pubmed_primary_38682670
PublicationCentury 2000
PublicationDate 20241106
PublicationDateYYYYMMDD 2024-11-06
PublicationDate_xml – month: 11
  year: 2024
  text: 20241106
  day: 6
PublicationDecade 2020
PublicationPlace Turkey
PublicationPlace_xml – name: Turkey
PublicationTitle Diagnostic and interventional radiology (Ankara, Turkey)
PublicationTitleAlternate Diagn Interv Radiol
PublicationYear 2024
Publisher Galenos Publishing
Galenos Publishing House
Publisher_xml – name: Galenos Publishing
– name: Galenos Publishing House
References ref0
References_xml – ident: ref0
SSID ssj0055914
Score 2.3945413
SecondaryResourceType review_article
Snippet The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 357
SubjectTerms artificial intelligence
Artificial Intelligence and Informatics - Invited Review
clinical decision-making
computer-assisted healthcare economics and organizations
data security in healthcare
radiology
regulatory compliance in medicine
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLaAAbEgbsolIzGwhCa244MNCogFFkBis3xFrZASVOjAv-c5TqsWIbEwRYpzOJ-f_d4X299D6IzyoEhl8kwYoTJWFSxThtCsCoUNzHrwGPGH2_2TeHyVN7dRJmeW6iuuCUvywAm4vg1RIaWwQlnCKmktRAieKDh4XnAS2tE351MylcZgCJOLlM42zvMCCUqiPgwoWB9cBdBCwi4gluAx0_ucP2pl-3-LNX8umZzzQXcbaL0LHvFVqvQmWgr1Flp96KbHt9HbYNg0kfxjCOtwy7tx_MKkEoFHc_KbeGZzGMJW_AWPxmPj0-YV7MFJjdv155cYejnusvLgzwa7LsPnDnq5u30e3GddNoXMgacqMl-QnDpwz87n1nMJnr2KYnPWK2ICM6R0SgZZelVCOwlbVpwGISQQKFo4I-guWqmbOuwjLI3MvZIM0CiZK-EmYCkid45X3soy76HzKab6PYlmaCAbEX4N8OsIv07w99B1xHx2WVS7bk-ADejOBvRfNtBDp9MW09A74pSHqUMz-dAUBqg41UihTnupBWevopIDtxJQIhfadqEuiyX1aNgqcEMYDbgQfvAftT9EaxGQdoMjP0Irn-NJOEbLH35y0hr1N6CK-58
  priority: 102
  providerName: Directory of Open Access Journals
Title Choosing the right artificial intelligence solutions for your radiology department: key factors to consider
URI https://www.ncbi.nlm.nih.gov/pubmed/38682670
https://www.proquest.com/docview/3048768430
https://pubmed.ncbi.nlm.nih.gov/PMC11589526
https://doaj.org/article/be03741b79b24f8bb511d29b51d6162e
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swED3UGYIsRdJPN23AAh26yJZIiiK7pW6CLCkKtAW6EfxSY6SRAice8u9zJCXDLjp1MmBbEnXvpHtHHt8BfGAiKNqasmhMowreVrxQhrKiDZUN3HqMGHHC7eJ78_WX_HIWZXLEuBcmFe07u5x1f25m3fIq1Vbe3rj5WCc2_3a5QBYjVU3FfAITJIdjjp7fv0iRq9zKNq7xYgKUBX04pl9zDBOYElI-Qx6BofcA9pkUSLBjq-KtsJTU-_9FOf-unNwKReeH8HTgkOQ0j_UInoTuGexfDqvkz-F6cdX3cQ6AILsjKf0m8cayWARZbqlwko3rEWSv5AFPTVbG5z0sxGOsWqUy9E8EH3YyNOch9z1xQ6PPF_Dz_OzH4qIYmioUDgNWVfiKlsxhlHa-tF5IDPBt1JyzXlETuKG1UzLI2qsa4Wps3QoWmgbtLVjlTMNewl7Xd-E1EGlk6ZXkaI2auxoPwmSlKZ0TrbeyLqfwcbSpvs3aGRpzjoiERiR0REJnJKbwOdp887coep2-6Fe_9QC9tiGK5eCglKW8ldYiWfRU4YcXlaBhCu9HxDQ-JHHlw3ShX99phu-puOLIcEyvMoKbS40eMAW5g-3OWHZ_Qb9MQtyjH775_0OP4SCaIe1uFG9h7361Du9gcufXJ2l64CT59iNR8P3g
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIpVeeLcsTyNx4JLdxHYcmxssrRbRrZAoEjcrfoSuaJNq2z3w7xnbyWoXceopUp6OP9vzjT3-BuAdE17Rps6zqq5UxpuCZ6qmLGt8YTw3Di1GmHCbfa9Of8rPR0EmRwx7YWLQvjWLcXtxOW4X5zG28urSToY4scm3-RRZjFQlFZMduIsdNs8HLz2NwEiSi5TMNqzyoguUJH04OmATNBToFFI-RiaBxncf9pgUSLFDsuINwxT1-_9HOv-NndwwRscPbvsbD-F-Tz_Jx3T9Edzx7WPYm_cL7E_g9_S868L0AUFiSKLnTsLLks4EWWwIeJJ1qyVIfMkffDVZ1i5tfyEOzdwyRrB_IDhOkD6vD7npiO1zhD6FH8dHZ9NZ1udjyCzauiJzBc2ZRQNvXW6ckMgNmiBXZ5yitec1La2SXpZOlYh0ZcpGMF9V-I-CFbau2AHstl3rnwGRtcydkhyrseS2xIfQz6lya0XjjCzzEbwfwNBXSXZDo7sSINQIoQ4Q6gThCD4FsNa3Bb3seKJb_tJ9dWvjg84OFkoZyhtpDPJMRxUenCgE9SN4O0CtsX-FRZO69d3qWjMc4sJiJcMyHSbo158ams4I5Faj2CrL9hVsC1HDe8D--e0ffQP3ZmfzE33y5fTrC9gPVRI3SYqXsHuzXPlXsHPtVq9j1_gLpUoSuA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIq16gfJeoGAkDlyySRzHsXuj266KoFUlQOJm-ZV2BU1W2-6Bf8_YSVa7FSc4RcrT8Wd7vrHH3wC8L7iXtNZZUulKJqzOWSI1LZLa58Yz49BihAm306_V-Q9xfBJkcg6HvTAxaN-a-aT5dT1p5lcxtnJxbdMhTiy9OJsiixGypDxduDrdgfvYaTM6eOrdKIxEOe8S2oaVXnSDOlkfhk5YisYCHUPKJsgm0ADvwagQHGl2SFi8YZyihv_fiOfd-MkNgzR7-D-_sg8PehpKPnb3PIJ7vnkMo7N-of0J_JxetW2YRiBIEEn04El4Yac3QeYbQp5k3XoJEmDyG19Nltp122CIQ3O3jJHshwTHC9Ln9yG3LbF9rtCn8H128m16mvR5GRKLNi9PXE6zwqKhty4zjgvkCHWQrTNOUu2ZpqWVwovSyRIRr0xZ88JXFf4nL3Krq-IZ7DZt418AEVpkTgqGVVkyW-JD6O9UmbW8dkaU2Rg-DICoRSe_odBtCTAqhFEFGFUH4xiOAmDr24JudjzRLi9VX-XK-KC3g4WShrJaGIN801GJB8dzTv0Y3g1wK-xnYfFEN75d3agCh7qwaFlgmZ538K8_NTSfMYithrFVlu0r2B6ilveA_8t_f_QtjC6OZ-rLp_PPr2Av1EjcK8lfw-7tcuUPYOfGrd7E3vEHRF4VOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Choosing+the+right+artificial+intelligence+solutions+for+your+radiology+department%3A+key+factors+to+consider&rft.jtitle=Diagnostic+and+interventional+radiology+%28Ankara%2C+Turkey%29&rft.au=Alis%2C+Deniz&rft.au=Tanyel%2C+Toygar&rft.au=Meltem%2C+Emine&rft.au=Seker%2C+Mustafa+Ege&rft.date=2024-11-06&rft.issn=1305-3612&rft.eissn=1305-3612&rft.volume=30&rft.issue=6&rft.spage=357&rft_id=info:doi/10.4274%2Fdir.2024.232658&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1305-3825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1305-3825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1305-3825&client=summon