Choosing the right artificial intelligence solutions for your radiology department: key factors to consider
The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions for interpretative tasks. This paper provides radiology departments with a practical guide for selecting and integrating AI solutions, focusi...
Saved in:
Published in: | Diagnostic and interventional radiology (Ankara, Turkey) Vol. 30; no. 6; pp. 357 - 365 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Turkey
Galenos Publishing
06-11-2024
Galenos Publishing House |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions for interpretative tasks. This paper provides radiology departments with a practical guide for selecting and integrating AI solutions, focusing on interpretative tasks that require the active involvement of radiologists. Our approach is not to list available applications or review scientific evidence, as this information is readily available in previous studies; instead, we concentrate on the essential factors radiology departments must consider when choosing AI solutions. These factors include clinical relevance, performance and validation, implementation and integration, clinical usability, costs and return on investment, and regulations, security, and privacy. We illustrate each factor with hypothetical scenarios to provide a clearer understanding and practical relevance. Through our experience and literature review, we provide insights and a practical roadmap for radiologists to navigate the complex landscape of AI in radiology. We aim to assist in making informed decisions that enhance diagnostic precision, improve patient outcomes, and streamline workflows, thus contributing to the advancement of radiological practices and patient care. |
---|---|
AbstractList | The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions for interpretative tasks. This paper provides radiology departments with a practical guide for selecting and integrating AI solutions, focusing on interpretative tasks that require the active involvement of radiologists. Our approach is not to list available applications or review scientific evidence, as this information is readily available in previous studies; instead, we concentrate on the essential factors radiology departments must consider when choosing AI solutions. These factors include clinical relevance, performance and validation, implementation and integration, clinical usability, costs and return on investment, and regulations, security, and privacy. We illustrate each factor with hypothetical scenarios to provide a clearer understanding and practical relevance. Through our experience and literature review, we provide insights and a practical roadmap for radiologists to navigate the complex landscape of AI in radiology. We aim to assist in making informed decisions that enhance diagnostic precision, improve patient outcomes, and streamline workflows, thus contributing to the advancement of radiological practices and patient care. The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions for interpretative tasks. This paper provides radiology departments with a practical guide for selecting and integrating AI solutions, focusing on interpretative tasks that require the active involvement of radiologists. Our approach is not to list available applications or review scientific evidence, as this information is readily available in previous studies; instead, we concentrate on the essential factors radiology departments must consider when choosing AI solutions. These factors include clinical relevance, performance and validation, implementation and integration, clinical usability, costs and return on investment, and regulations, security, and privacy. We illustrate each factor with hypothetical scenarios to provide a clearer understanding and practical relevance. Through our experience and literature review, we provide insights and a practical roadmap for radiologists to navigate the complex landscape of AI in radiology. We aim to assist in making informed decisions that enhance diagnostic precision, improve patient outcomes, and streamline workflows, thus contributing to the advancement of radiological practices and patient care.The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions for interpretative tasks. This paper provides radiology departments with a practical guide for selecting and integrating AI solutions, focusing on interpretative tasks that require the active involvement of radiologists. Our approach is not to list available applications or review scientific evidence, as this information is readily available in previous studies; instead, we concentrate on the essential factors radiology departments must consider when choosing AI solutions. These factors include clinical relevance, performance and validation, implementation and integration, clinical usability, costs and return on investment, and regulations, security, and privacy. We illustrate each factor with hypothetical scenarios to provide a clearer understanding and practical relevance. Through our experience and literature review, we provide insights and a practical roadmap for radiologists to navigate the complex landscape of AI in radiology. We aim to assist in making informed decisions that enhance diagnostic precision, improve patient outcomes, and streamline workflows, thus contributing to the advancement of radiological practices and patient care. |
Author | Meltem, Emine Alis, Deniz Tanyel, Toygar Seker, Mustafa Ege Seker, Delal Öksüz, İlkay Karaarslan, Ercan Karakaş, Hakkı Muammer |
Author_xml | – sequence: 1 givenname: Deniz orcidid: 0000-0002-7045-1793 surname: Alis fullname: Alis, Deniz organization: Acıbadem Mehmet Ali Aydınlar University Faculty of Medicine, Department of Radiology, İstanbul, Türkiye – sequence: 2 givenname: Toygar orcidid: 0000-0002-2421-6880 surname: Tanyel fullname: Tanyel, Toygar organization: İstanbul Technical University, Biomedical Engineering Graduate Program, İstanbul, Türkiye – sequence: 3 givenname: Emine orcidid: 0000-0003-3927-321X surname: Meltem fullname: Meltem, Emine organization: University of Health Sciences Türkiye, İstanbul Training and Research Hospital, Clinic of Diagnostic and Interventional Radiology, İstanbul, Türkiye – sequence: 4 givenname: Mustafa Ege orcidid: 0000-0001-7664-5786 surname: Seker fullname: Seker, Mustafa Ege organization: Acıbadem Mehmet Ali Aydınlar University Faculty of Medicine, Department of Radiology, İstanbul, Türkiye – sequence: 5 givenname: Delal orcidid: 0000-0002-6863-7150 surname: Seker fullname: Seker, Delal organization: Dicle University Faculty of Engineering, Department of Electrical-Electronics Engineering, Diyarbakır, Türkiye – sequence: 6 givenname: Hakkı Muammer orcidid: 0000-0002-1328-8520 surname: Karakaş fullname: Karakaş, Hakkı Muammer organization: University of Health Sciences, Clinic of Radiology, İstanbul, Türkiye – sequence: 7 givenname: Ercan orcidid: 0000-0002-4581-4273 surname: Karaarslan fullname: Karaarslan, Ercan organization: Acıbadem Mehmet Ali Aydınlar University Faculty of Medicine, Department of Radiology, İstanbul, Türkiye – sequence: 8 givenname: İlkay orcidid: 0000-0001-6478-0534 surname: Öksüz fullname: Öksüz, İlkay organization: İstanbul Technical University Faculty of Engineering, Department of Computer Engineering, İstanbul, Türkiye |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38682670$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUlvFDEQhS0URBY4c0M-cpmJ93ZzQWjEEikSFzhbXqp7nPTYg90daf49HiaJyKks-72vqvwu0VnKCRB6T8lasE5ch1jWjDCxZpwpqV-hC8qJXHFF2dnTWTN5ji5rvSNEyp6KN-ica6WZ6sgFut9sc64xjXjeAi5x3M7YljkO0Uc74ZhmmKY4QvKAa56WOeZU8ZALPuSl4GJDzFMeDzjAvvl2kOZP-B4OeLB-zqXiOWPfLDFAeYteD3aq8O6xXqHf377-2vxY3f78frP5crvyXFC6CpQR7qmWPhAXlNaUDaSX3IWeWRCWSd9r0DL0EqjrnBwUh67TvVScetvxK3Rz4oZs78y-xJ0tB5NtNP8uchnNcUU_gXFAeCcapXdMDNo5SWlgfStBUcWgsT6fWPvF7SD4tl-x0wvoy5cUt2bMD4ZS2SZiqhE-PhJK_rNAnc0uVt9-1SbISzWcCN0pLThp0uuT1Jdca4HhuQ8l5pi3aXmbY97mlHdzfPh_vGf9U8D8L5kzqmk |
CitedBy_id | crossref_primary_10_1007_s00330_024_10873_7 |
ContentType | Journal Article |
Copyright | Copyright© Author(s) - Available online at dirjournal.org. 2024 Diagnostic and Interventional Radiology |
Copyright_xml | – notice: Copyright© Author(s) - Available online at dirjournal.org. 2024 Diagnostic and Interventional Radiology |
DBID | NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.4274/dir.2024.232658 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1305-3612 |
EndPage | 365 |
ExternalDocumentID | oai_doaj_org_article_be03741b79b24f8bb511d29b51d6162e 10_4274_dir_2024_232658 38682670 |
Genre | Journal Article |
GroupedDBID | --- 29G 2WC 3V. 53G 5GY 6PF 7RV 7X7 8FE 8FG 8FI AAWTL ADBBV AENEX AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS ARAPS BAWUL BENPR BGLVJ BKEYQ BMSDO BPHCQ BVXVI DIK EBS EDSIH EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HYE IAO IHR INH ITC M1P NAPCQ NPM OK1 P62 PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 UKHRP AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c3411-d1203c185cd0bd68812f0953bd92ae4a25c98e85d95e1b7b5f63e77895631ca73 |
IEDL.DBID | RPM |
ISSN | 1305-3825 1305-3612 |
IngestDate | Mon Nov 18 19:23:16 EST 2024 Wed Nov 27 05:24:23 EST 2024 Thu Nov 07 17:16:22 EST 2024 Wed Nov 20 13:17:21 EST 2024 Sat Nov 02 11:58:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Radiology data security in healthcare computer-assisted healthcare economics and organizations clinical decision-making regulatory compliance in medicine artificial intelligence |
Language | English |
License | Content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3411-d1203c185cd0bd68812f0953bd92ae4a25c98e85d95e1b7b5f63e77895631ca73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6863-7150 0000-0002-7045-1793 0000-0003-3927-321X 0000-0002-4581-4273 0000-0001-6478-0534 0000-0002-1328-8520 0000-0002-2421-6880 0000-0001-7664-5786 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589526/ |
PMID | 38682670 |
PQID | 3048768430 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_be03741b79b24f8bb511d29b51d6162e pubmedcentral_primary_oai_pubmedcentral_nih_gov_11589526 proquest_miscellaneous_3048768430 crossref_primary_10_4274_dir_2024_232658 pubmed_primary_38682670 |
PublicationCentury | 2000 |
PublicationDate | 20241106 |
PublicationDateYYYYMMDD | 2024-11-06 |
PublicationDate_xml | – month: 11 year: 2024 text: 20241106 day: 6 |
PublicationDecade | 2020 |
PublicationPlace | Turkey |
PublicationPlace_xml | – name: Turkey |
PublicationTitle | Diagnostic and interventional radiology (Ankara, Turkey) |
PublicationTitleAlternate | Diagn Interv Radiol |
PublicationYear | 2024 |
Publisher | Galenos Publishing Galenos Publishing House |
Publisher_xml | – name: Galenos Publishing – name: Galenos Publishing House |
References | ref0 |
References_xml | – ident: ref0 |
SSID | ssj0055914 |
Score | 2.3945413 |
SecondaryResourceType | review_article |
Snippet | The rapid evolution of artificial intelligence (AI), particularly in deep learning, has significantly impacted radiology, introducing an array of AI solutions... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 357 |
SubjectTerms | artificial intelligence Artificial Intelligence and Informatics - Invited Review clinical decision-making computer-assisted healthcare economics and organizations data security in healthcare radiology regulatory compliance in medicine |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLaAAbEgbsolIzGwhCa244MNCogFFkBis3xFrZASVOjAv-c5TqsWIbEwRYpzOJ-f_d4X299D6IzyoEhl8kwYoTJWFSxThtCsCoUNzHrwGPGH2_2TeHyVN7dRJmeW6iuuCUvywAm4vg1RIaWwQlnCKmktRAieKDh4XnAS2tE351MylcZgCJOLlM42zvMCCUqiPgwoWB9cBdBCwi4gluAx0_ucP2pl-3-LNX8umZzzQXcbaL0LHvFVqvQmWgr1Flp96KbHt9HbYNg0kfxjCOtwy7tx_MKkEoFHc_KbeGZzGMJW_AWPxmPj0-YV7MFJjdv155cYejnusvLgzwa7LsPnDnq5u30e3GddNoXMgacqMl-QnDpwz87n1nMJnr2KYnPWK2ICM6R0SgZZelVCOwlbVpwGISQQKFo4I-guWqmbOuwjLI3MvZIM0CiZK-EmYCkid45X3soy76HzKab6PYlmaCAbEX4N8OsIv07w99B1xHx2WVS7bk-ADejOBvRfNtBDp9MW09A74pSHqUMz-dAUBqg41UihTnupBWevopIDtxJQIhfadqEuiyX1aNgqcEMYDbgQfvAftT9EaxGQdoMjP0Irn-NJOEbLH35y0hr1N6CK-58 priority: 102 providerName: Directory of Open Access Journals |
Title | Choosing the right artificial intelligence solutions for your radiology department: key factors to consider |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38682670 https://www.proquest.com/docview/3048768430 https://pubmed.ncbi.nlm.nih.gov/PMC11589526 https://doaj.org/article/be03741b79b24f8bb511d29b51d6162e |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swED3UGYIsRdJPN23AAh26yJZIiiK7pW6CLCkKtAW6EfxSY6SRAice8u9zJCXDLjp1MmBbEnXvpHtHHt8BfGAiKNqasmhMowreVrxQhrKiDZUN3HqMGHHC7eJ78_WX_HIWZXLEuBcmFe07u5x1f25m3fIq1Vbe3rj5WCc2_3a5QBYjVU3FfAITJIdjjp7fv0iRq9zKNq7xYgKUBX04pl9zDBOYElI-Qx6BofcA9pkUSLBjq-KtsJTU-_9FOf-unNwKReeH8HTgkOQ0j_UInoTuGexfDqvkz-F6cdX3cQ6AILsjKf0m8cayWARZbqlwko3rEWSv5AFPTVbG5z0sxGOsWqUy9E8EH3YyNOch9z1xQ6PPF_Dz_OzH4qIYmioUDgNWVfiKlsxhlHa-tF5IDPBt1JyzXlETuKG1UzLI2qsa4Wps3QoWmgbtLVjlTMNewl7Xd-E1EGlk6ZXkaI2auxoPwmSlKZ0TrbeyLqfwcbSpvs3aGRpzjoiERiR0REJnJKbwOdp887coep2-6Fe_9QC9tiGK5eCglKW8ldYiWfRU4YcXlaBhCu9HxDQ-JHHlw3ShX99phu-puOLIcEyvMoKbS40eMAW5g-3OWHZ_Qb9MQtyjH775_0OP4SCaIe1uFG9h7361Du9gcufXJ2l64CT59iNR8P3g |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIpVeeLcsTyNx4JLdxHYcmxssrRbRrZAoEjcrfoSuaJNq2z3w7xnbyWoXceopUp6OP9vzjT3-BuAdE17Rps6zqq5UxpuCZ6qmLGt8YTw3Di1GmHCbfa9Of8rPR0EmRwx7YWLQvjWLcXtxOW4X5zG28urSToY4scm3-RRZjFQlFZMduIsdNs8HLz2NwEiSi5TMNqzyoguUJH04OmATNBToFFI-RiaBxncf9pgUSLFDsuINwxT1-_9HOv-NndwwRscPbvsbD-F-Tz_Jx3T9Edzx7WPYm_cL7E_g9_S868L0AUFiSKLnTsLLks4EWWwIeJJ1qyVIfMkffDVZ1i5tfyEOzdwyRrB_IDhOkD6vD7npiO1zhD6FH8dHZ9NZ1udjyCzauiJzBc2ZRQNvXW6ckMgNmiBXZ5yitec1La2SXpZOlYh0ZcpGMF9V-I-CFbau2AHstl3rnwGRtcydkhyrseS2xIfQz6lya0XjjCzzEbwfwNBXSXZDo7sSINQIoQ4Q6gThCD4FsNa3Bb3seKJb_tJ9dWvjg84OFkoZyhtpDPJMRxUenCgE9SN4O0CtsX-FRZO69d3qWjMc4sJiJcMyHSbo158ams4I5Faj2CrL9hVsC1HDe8D--e0ffQP3ZmfzE33y5fTrC9gPVRI3SYqXsHuzXPlXsHPtVq9j1_gLpUoSuA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIq16gfJeoGAkDlyySRzHsXuj266KoFUlQOJm-ZV2BU1W2-6Bf8_YSVa7FSc4RcrT8Wd7vrHH3wC8L7iXtNZZUulKJqzOWSI1LZLa58Yz49BihAm306_V-Q9xfBJkcg6HvTAxaN-a-aT5dT1p5lcxtnJxbdMhTiy9OJsiixGypDxduDrdgfvYaTM6eOrdKIxEOe8S2oaVXnSDOlkfhk5YisYCHUPKJsgm0ADvwagQHGl2SFi8YZyihv_fiOfd-MkNgzR7-D-_sg8PehpKPnb3PIJ7vnkMo7N-of0J_JxetW2YRiBIEEn04El4Yac3QeYbQp5k3XoJEmDyG19Nltp122CIQ3O3jJHshwTHC9Ln9yG3LbF9rtCn8H128m16mvR5GRKLNi9PXE6zwqKhty4zjgvkCHWQrTNOUu2ZpqWVwovSyRIRr0xZ88JXFf4nL3Krq-IZ7DZt418AEVpkTgqGVVkyW-JD6O9UmbW8dkaU2Rg-DICoRSe_odBtCTAqhFEFGFUH4xiOAmDr24JudjzRLi9VX-XK-KC3g4WShrJaGIN801GJB8dzTv0Y3g1wK-xnYfFEN75d3agCh7qwaFlgmZ538K8_NTSfMYithrFVlu0r2B6ilveA_8t_f_QtjC6OZ-rLp_PPr2Av1EjcK8lfw-7tcuUPYOfGrd7E3vEHRF4VOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Choosing+the+right+artificial+intelligence+solutions+for+your+radiology+department%3A+key+factors+to+consider&rft.jtitle=Diagnostic+and+interventional+radiology+%28Ankara%2C+Turkey%29&rft.au=Alis%2C+Deniz&rft.au=Tanyel%2C+Toygar&rft.au=Meltem%2C+Emine&rft.au=Seker%2C+Mustafa+Ege&rft.date=2024-11-06&rft.issn=1305-3612&rft.eissn=1305-3612&rft.volume=30&rft.issue=6&rft.spage=357&rft_id=info:doi/10.4274%2Fdir.2024.232658&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1305-3825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1305-3825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1305-3825&client=summon |