Thermal analysis of blood undergoing laser photocoagulation
The temperature of blood undergoing laser-induced photocoagulation during long-pulse (10 ms) 532 nm irradiation was measured in a time- and spatially-resolved manner using a novel technique. This method is based on the change in reflectivity of a solid-liquid interface given a dynamically changing r...
Saved in:
Published in: | IEEE journal of selected topics in quantum electronics Vol. 7; no. 6; pp. 936 - 943 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-11-2001
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The temperature of blood undergoing laser-induced photocoagulation during long-pulse (10 ms) 532 nm irradiation was measured in a time- and spatially-resolved manner using a novel technique. This method is based on the change in reflectivity of a solid-liquid interface given a dynamically changing refractive index in the liquid phase. In our case, the temperature-dependent change in the refractive index of blood was utilized, and the reflectivity at a glass-blood interface was measured. Measurements were compared to predictions from a finite-element model incorporating the effects of time-dependent changes in the absorption coefficients of the blood, and phase changes representing coagulation and the liquid/vapor transition. Previous studies have linked the onset of blood coagulation to a sharp rise in the 532-nm reflectance of the blood. Based on the thermal measurements and the results of an Arrhenius analysis, we postulate that the reflectance rise is a combination of protein denaturation and red blood cell conformal changes. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1077-260X 1558-4542 |
DOI: | 10.1109/2944.983297 |