A fuzzy based solution to multiple objective LPP
This study presents a Fuzzy Multiple Objective Linear Programming Problem (FMOLPP) method to solve the Linear Programming Problem (LPP). Initially Multiple Objective Linear Programming Problem (MOLPP) is solved using Chandra Sen's approach along with various types of mean approaches. Furthermor...
Saved in:
Published in: | AIMS mathematics Vol. 8; no. 4; pp. 7714 - 7730 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
AIMS Press
2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This study presents a Fuzzy Multiple Objective Linear Programming Problem (FMOLPP) method to solve the Linear Programming Problem (LPP). Initially Multiple Objective Linear Programming Problem (MOLPP) is solved using Chandra Sen's approach along with various types of mean approaches. Furthermore, FMOLPP is solved using Chandra Sen's approach and various categories of fuzzy mean techniques. The simplex form is used to solve the LPP, where the three-tuple symmetric triangular fuzzy number with the constraints of the fuzzy objective function is considered. We have presented a comparative study of optimum values of MOLPP with optimum values of FMOLPP, to show the significance of our proposed method. |
---|---|
AbstractList | This study presents a Fuzzy Multiple Objective Linear Programming Problem (FMOLPP) method to solve the Linear Programming Problem (LPP). Initially Multiple Objective Linear Programming Problem (MOLPP) is solved using Chandra Sen's approach along with various types of mean approaches. Furthermore, FMOLPP is solved using Chandra Sen's approach and various categories of fuzzy mean techniques. The simplex form is used to solve the LPP, where the three-tuple symmetric triangular fuzzy number with the constraints of the fuzzy objective function is considered. We have presented a comparative study of optimum values of MOLPP with optimum values of FMOLPP, to show the significance of our proposed method. |
Author | Nandhini, S Junaid Basha, M |
Author_xml | – sequence: 1 givenname: M surname: Junaid Basha fullname: Junaid Basha, M – sequence: 2 givenname: S surname: Nandhini fullname: Nandhini, S |
BookMark | eNpNkMtOAjEUhhuDiYjsfIA-gIOnl5m2S0K8kEwiC103vY0OGSiZFhN4ehkhxtV_8i--8-e7RaNt3AaE7gnMmGL8cWPy14wCZUyKKzSmXLCiUlKO_t03aJrSGgAooZwKPkYwx83-eDxga1LwOMVun9u4xTnizb7L7a4LONp1cLn9Drhere7QdWO6FKaXnKCP56f3xWtRv70sF_O6cIypXFhfKmKBnd54CQ1RtqGe-8DKIGgVuBg6A5KqwDkBVwrriWFKeGkJcMYmaHnm-mjWete3G9MfdDSt_i1i_6lNn1vXBc052FDyqnLBcQneNExyWoItT1u8GFgPZ5brY0p9aP54BPQgTw_y9EUe-wEFIGIO |
CitedBy_id | crossref_primary_10_3233_JIFS_235526 |
Cites_doi | 10.1016/j.knosys.2017.10.002 10.1007/s10115-017-1085-6 10.1109/DELCON54057.2022.9753474 10.1007/s00500-005-0042-6 10.1016/j.ins.2015.07.014 10.11648/j.ml.20180402.11 10.3233/IFS-151934 10.1016/j.knosys.2018.02.030 10.1109/FSKD.2014.6980827 10.1016/j.inffus.2015.01.006 10.15388/Informatica.2016.115 10.1016/j.asoc.2020.106556 10.1016/j.asoc.2021.107757 10.1007/s42452-019-1892-3 10.1016/j.apm.2013.09.006 10.4236/ajor.2019.93006 10.1007/s40815-017-0336-8 10.1016/j.aej.2022.01.021 10.1155/2018/6476315 10.3390/sym12040516 10.1007/s10700-016-9250-z 10.1016/j.knosys.2015.02.027 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2023387 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 7730 |
ExternalDocumentID | oai_doaj_org_article_440be5466cec480daf384250b5c33d73 10_3934_math_2023387 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c339t-bd591b03242d80f19bf2d4de35e726e470f19a0829e4410c57bd1a397d8b10433 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Tue Oct 22 15:12:12 EDT 2024 Thu Nov 21 22:09:29 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-bd591b03242d80f19bf2d4de35e726e470f19a0829e4410c57bd1a397d8b10433 |
OpenAccessLink | https://doaj.org/article/440be5466cec480daf384250b5c33d73 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_440be5466cec480daf384250b5c33d73 crossref_primary_10_3934_math_2023387 |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2023387-9 key-10.3934/math.2023387-11 key-10.3934/math.2023387-10 key-10.3934/math.2023387-13 key-10.3934/math.2023387-12 key-10.3934/math.2023387-15 key-10.3934/math.2023387-14 key-10.3934/math.2023387-17 key-10.3934/math.2023387-16 key-10.3934/math.2023387-19 key-10.3934/math.2023387-18 key-10.3934/math.2023387-6 key-10.3934/math.2023387-5 key-10.3934/math.2023387-8 key-10.3934/math.2023387-7 key-10.3934/math.2023387-2 key-10.3934/math.2023387-1 key-10.3934/math.2023387-4 key-10.3934/math.2023387-20 key-10.3934/math.2023387-3 key-10.3934/math.2023387-22 key-10.3934/math.2023387-21 key-10.3934/math.2023387-24 key-10.3934/math.2023387-23 key-10.3934/math.2023387-25 |
References_xml | – ident: key-10.3934/math.2023387-8 doi: 10.1016/j.knosys.2017.10.002 – ident: key-10.3934/math.2023387-10 doi: 10.1007/s10115-017-1085-6 – ident: key-10.3934/math.2023387-23 – ident: key-10.3934/math.2023387-17 doi: 10.1109/DELCON54057.2022.9753474 – ident: key-10.3934/math.2023387-13 – ident: key-10.3934/math.2023387-24 doi: 10.1007/s00500-005-0042-6 – ident: key-10.3934/math.2023387-3 doi: 10.1016/j.ins.2015.07.014 – ident: key-10.3934/math.2023387-21 doi: 10.11648/j.ml.20180402.11 – ident: key-10.3934/math.2023387-25 doi: 10.3233/IFS-151934 – ident: key-10.3934/math.2023387-11 doi: 10.1016/j.knosys.2018.02.030 – ident: key-10.3934/math.2023387-1 doi: 10.1109/FSKD.2014.6980827 – ident: key-10.3934/math.2023387-4 doi: 10.1016/j.inffus.2015.01.006 – ident: key-10.3934/math.2023387-6 doi: 10.15388/Informatica.2016.115 – ident: key-10.3934/math.2023387-15 doi: 10.1016/j.asoc.2020.106556 – ident: key-10.3934/math.2023387-22 – ident: key-10.3934/math.2023387-16 doi: 10.1016/j.asoc.2021.107757 – ident: key-10.3934/math.2023387-14 doi: 10.1007/s42452-019-1892-3 – ident: key-10.3934/math.2023387-2 doi: 10.1016/j.apm.2013.09.006 – ident: key-10.3934/math.2023387-12 doi: 10.4236/ajor.2019.93006 – ident: key-10.3934/math.2023387-7 doi: 10.1007/s40815-017-0336-8 – ident: key-10.3934/math.2023387-18 doi: 10.1016/j.aej.2022.01.021 – ident: key-10.3934/math.2023387-19 doi: 10.1155/2018/6476315 – ident: key-10.3934/math.2023387-20 doi: 10.3390/sym12040516 – ident: key-10.3934/math.2023387-9 doi: 10.1007/s10700-016-9250-z – ident: key-10.3934/math.2023387-5 doi: 10.1016/j.knosys.2015.02.027 |
SSID | ssj0002124274 |
Score | 2.2583528 |
Snippet | This study presents a Fuzzy Multiple Objective Linear Programming Problem (FMOLPP) method to solve the Linear Programming Problem (LPP). Initially Multiple... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 7714 |
SubjectTerms | deffuzification mean of maxima (mom) fuzzy mean methods fuzzy molpp mean techniques molpp symmetric triangular fuzzy number |
Title | A fuzzy based solution to multiple objective LPP |
URI | https://doaj.org/article/440be5466cec480daf384250b5c33d73 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED4BEwyIpygveYAxqp34EY8FWnUAVAmQ2CI7dgaGFtF2oL-euzqtysTCakWWfefcfZ99_gxw4zyuEy6azJpQI0ExOnPamCzy2mmPvFmXdFF4-GKe38uHPsnkrJ_6opqwJA-cDNeVkvuopNZ1rGXJg2sKOjniXtVFEUzS-eR6g0xRDMaALJFvpUr3whayi_iPzh5ypGTmVw7akOpf5pTBAey3YJD10iAOYSuOj2Dvaa2kOj0G3mPNfLH4ZpRuAlutFDabsFUtIJv4jxS22ONodAJvg_7r_TBrXznIcAJ2lvmgrPCcgE0oeSOsb_IgQyxUNLmO0lCboyuwEaELr5XxQTiEEaH0guTHTmFnPBnHM2BNNEEEgwkHQV20rnRCqtzgT-oswizVgdvVvKvPJGZRIQkg-1Rkn6q1TwfuyCjrb0iCetmAjqlax1R_Oeb8Pzq5gF0aU9rzuISd2dc8XsH2NMyvlw7_AVpNrQs |
link.rule.ids | 315,782,786,866,2106,4028,27932,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fuzzy+based+solution+to+multiple+objective+LPP&rft.jtitle=AIMS+mathematics&rft.au=Junaid+Basha%2C+M&rft.au=Nandhini%2C+S&rft.date=2023&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=4&rft.spage=7714&rft.epage=7730&rft_id=info:doi/10.3934%2Fmath.2023387&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023387 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |