ATL-BP: A Student Engagement Dataset and Model for Affect Transfer Learning for Behavior Prediction
We propose a video-based transfer learning approach for predicting problem outcomes of students working with an intelligent tutoring system (ITS) by analyzing their faces and gestures. The ability to predict such outcomes enables tutoring systems to adjust interventions and ultimately yield improved...
Saved in:
Published in: | IEEE transactions on biometrics, behavior, and identity science Vol. 5; no. 3; pp. 411 - 424 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
01-07-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We propose a video-based transfer learning approach for predicting problem outcomes of students working with an intelligent tutoring system (ITS) by analyzing their faces and gestures. The ability to predict such outcomes enables tutoring systems to adjust interventions and ultimately yield improved student learning. We collected and released a labeled dataset of 2,749 problem-solving interaction samples of 54 students working with an intelligent online math tutor. Our transfer-learning challenge was then to design a representation in the source domain of images obtained from the Internet for facial expression analysis, and transfer this learned representation for human behavior prediction in the domain of webcam videos of students in a classroom environment. We developed a novel facial affect representation and a user-personalized training scheme that unlocks the potential of this representation. We designed several variants of a recurrent neural network that models the temporal structure of video sequences. Our final model, named ATL-BP for Affect Transfer Learning for Behavior Prediction, achieves a relative increase in the mean F-score of 50% over the state-of-the-art method on this new dataset. We also propose an additional set of annotations to predict students' engagement while solving a specific problem, and present models that can predict such engagement. |
---|---|
AbstractList | We propose a video-based transfer learning approach for predicting problem outcomes of students working with an intelligent tutoring system (ITS) by analyzing their faces and gestures. The ability to predict such outcomes enables tutoring systems to adjust interventions and ultimately yield improved student learning. We collected and released a labeled dataset of 2,749 problem-solving interaction samples of 54 students working with an intelligent online math tutor. Our transfer-learning challenge was then to design a representation in the source domain of images obtained from the Internet for facial expression analysis, and transfer this learned representation for human behavior prediction in the domain of webcam videos of students in a classroom environment. We developed a novel facial affect representation and a user-personalized training scheme that unlocks the potential of this representation. We designed several variants of a recurrent neural network that models the temporal structure of video sequences. Our final model, named ATL-BP for Affect Transfer Learning for Behavior Prediction, achieves a relative increase in the mean F-score of 50% over the state-of-the-art method on this new dataset. We also propose an additional set of annotations to predict students’ engagement while solving a specific problem, and present models that can predict such engagement. |
Author | Betke, Margrit Ruiz, Nataniel Ablavsky, Vitaly Sclaroff, Stan Magee, John J. Yu, Hao Allessio, Danielle A. Bargal, Sarah Adel Murray, Tom Arroyo, Ivon Woolf, Beverly P. Jalal, Mona Delgado, Kevin Manuel Joshi, Ajjen |
Author_xml | – sequence: 1 givenname: Nataniel orcidid: 0000-0002-9966-6456 surname: Ruiz fullname: Ruiz, Nataniel organization: Department of Computer Science, Boston University, Boston, MA, USA – sequence: 2 givenname: Hao orcidid: 0000-0002-4334-604X surname: Yu fullname: Yu, Hao email: haoyu@bu.edu organization: Department of Computer Science, Boston University, Boston, MA, USA – sequence: 3 givenname: Danielle A. orcidid: 0000-0002-3276-4393 surname: Allessio fullname: Allessio, Danielle A. organization: College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA, USA – sequence: 4 givenname: Mona orcidid: 0000-0001-9904-9354 surname: Jalal fullname: Jalal, Mona organization: Department of Computer Science, Boston University, Boston, MA, USA – sequence: 5 givenname: Ajjen surname: Joshi fullname: Joshi, Ajjen organization: Affectiva, Boston, MA, USA – sequence: 6 givenname: Tom surname: Murray fullname: Murray, Tom organization: College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA, USA – sequence: 7 givenname: John J. surname: Magee fullname: Magee, John J. organization: Department of Mathematics and Computer Science, Clark University, Worcester, MA, USA – sequence: 8 givenname: Kevin Manuel orcidid: 0000-0002-4721-0182 surname: Delgado fullname: Delgado, Kevin Manuel organization: Department of Computer Science, Boston University, Boston, MA, USA – sequence: 9 givenname: Vitaly orcidid: 0000-0003-2703-7666 surname: Ablavsky fullname: Ablavsky, Vitaly organization: Applied Physics Laboratory, University of Washington, Seattle, WA, USA – sequence: 10 givenname: Stan orcidid: 0000-0002-0711-4313 surname: Sclaroff fullname: Sclaroff, Stan organization: Department of Computer Science, Boston University, Boston, MA, USA – sequence: 11 givenname: Ivon orcidid: 0000-0002-9697-8016 surname: Arroyo fullname: Arroyo, Ivon organization: College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA, USA – sequence: 12 givenname: Beverly P. orcidid: 0000-0002-0509-307X surname: Woolf fullname: Woolf, Beverly P. organization: College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA, USA – sequence: 13 givenname: Sarah Adel orcidid: 0000-0003-3157-0412 surname: Bargal fullname: Bargal, Sarah Adel organization: Department of Computer Science, Georgetown University, Washington, DC, USA – sequence: 14 givenname: Margrit orcidid: 0000-0002-4491-6868 surname: Betke fullname: Betke, Margrit organization: Department of Computer Science, Boston University, Boston, MA, USA |
BookMark | eNpNkF9LAkEUxYcwyMwvUC8DPa_NP2ec3lazElYU2p6X6-xdW9FZm12Dvn2rRgQX7oF7zj3wuyYdX3kk5JazAefMPqTj2WI-EEyIgRScKWMvSFdoaSKtmOn801ekX9cbxphgyrbTJS5Ok2i8fKQxfWsOOfqGTv0a1rg7yidooMaGgs_pvMpxS4sq0Lgo0DU0DeDrAgNNEIIv_fp0HOMHfJWtWAbMS9eUlb8hlwVsa-z_7h55f56mk9coWbzMJnESOSltEwEDGGplQDuuhAC1Aq64Zlat0CmwvBiZoZbK5ExYNEIKZyQTuVppdMKA7JH78999qD4PWDfZpjoE31ZmYtRS0UOlbesSZ5cLVV0HLLJ9KHcQvjPOsiPP7MQzO_LMfnm2obtzqETEv4C1TCvO5A-29nEE |
CODEN | ITBBCT |
CitedBy_id | crossref_primary_10_1007_s11042_023_17534_9 |
Cites_doi | 10.1037/1528-3542.5.2.200 10.1109/CVPRW.2018.00281 10.1109/CVPR.2016.90 10.3389/fpsyg.2014.01532 10.1109/FG52635.2021.9666982 10.1109/34.954607 10.1007/978-3-642-21869-9_103 10.1007/3-540-55606-0_49 10.1109/CVPR.2009.5206848 10.1007/978-3-642-13388-6_29 10.1162/neco.1997.9.8.1735 10.1109/FG.2019.8756624 10.1109/MIS.2007.79 10.1109/FIE49875.2021.9637240 10.1016/j.learninstruc.2012.05.003 10.1007/978-3-319-07221-0_4 10.1109/T-AFFC.2010.10 10.1016/j.ijhcs.2009.12.003 10.1109/ICCVW54120.2021.00405 10.1109/FG52635.2021.9667001 10.1037/0022-3514.52.6.1122 10.1007/978-3-030-52237-7_31 10.1109/TAFFC.2017.2740923 10.1109/TKDE.2009.191 10.1080/00461520.2011.611369 10.1504/IJLT.2009.028804 10.1016/j.imavis.2017.01.012 10.5244/C.29.41 10.1080/1358165042000283101 10.1109/ICISCE.2017.95 10.1109/FG.2018.00019 10.1109/CVPR.2016.23 10.1145/2647868.2654916 10.1007/978-3-030-77873-6_16 10.1007/s40593-014-0023-y 10.1186/s40594-018-0111-x 10.1109/ICCV.2015.430 10.1109/ICCV48922.2021.00986 10.1007/978-3-642-13388-6_37 10.1007/s11162-005-8150-9 10.1109/ITHET.2006.339720 10.1109/CVPR.2019.00118 10.1109/TMM.2016.2523421 10.1007/978-3-319-93843-1_26 10.1109/CVPR.2017.195 10.3102/0034654315581420 10.1016/j.ijhcs.2012.01.004 10.1109/FG.2019.8756620 10.1016/j.patrec.2013.02.002 10.1007/978-3-319-45153-4_41 10.1016/j.ijhcs.2007.02.003 10.1109/FG52635.2021.9666945 10.1109/ICIP.2012.6467436 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TBIOM.2022.3210479 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: ESBDL name: IEEE Xplore Open Access Journals url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2637-6407 |
EndPage | 424 |
ExternalDocumentID | 10_1109_TBIOM_2022_3210479 9906410 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1551572; 1551589; 1551590; 1551594 funderid: 10.13039/100000001 |
GroupedDBID | 0R~ 97E AAJGR AASAJ ABQJQ ABVLG AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c339t-a0aa5647a6c1422a4ba1416094bec4a91f8756347d029e7232c7302d4b6ec27a3 |
IEDL.DBID | ESBDL |
ISSN | 2637-6407 |
IngestDate | Thu Oct 10 20:29:34 EDT 2024 Fri Aug 23 01:18:04 EDT 2024 Wed Jun 26 19:28:02 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-a0aa5647a6c1422a4ba1416094bec4a91f8756347d029e7232c7302d4b6ec27a3 |
ORCID | 0000-0003-2703-7666 0000-0002-0711-4313 0000-0002-3276-4393 0000-0001-9904-9354 0000-0002-9966-6456 0000-0003-3157-0412 0000-0002-4491-6868 0000-0002-9697-8016 0000-0002-4721-0182 0000-0002-4334-604X 0000-0002-0509-307X |
OpenAccessLink | https://ieeexplore.ieee.org/document/9906410 |
PQID | 2847965469 |
PQPubID | 4437219 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TBIOM_2022_3210479 proquest_journals_2847965469 ieee_primary_9906410 |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on biometrics, behavior, and identity science |
PublicationTitleAbbrev | TBIOM |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref59 ref14 ref58 ref11 ref55 gordon (ref6) 2016 ref10 dosovitskiy (ref54) 2020 king (ref52) 2009; 10 ref17 ref16 ref19 ref18 karumbaiah (ref45) 2017 parsons (ref61) 2011; 14 ref51 ref50 amershi (ref31) 2016 ref48 mayo (ref23) 2001 jastrzebski (ref56) 2018 ref47 ref42 ref41 ref44 simonyan (ref65) 2015 ref43 (ref1) 2018 lallé (ref37) 2018 ref49 khan (ref57) 0; 83 ref8 ref7 ref9 ref3 ref5 ref40 ref35 ref34 kim (ref46) 2005 ref36 ref33 ref32 ref2 ref39 graesser (ref30) 2001; 22 ref38 xu (ref15) 2015 ref71 ref70 ref24 ref68 ref67 ref26 ref25 ref69 ref20 ref63 ref22 ref66 ref21 ref28 ref27 ref29 arroyo (ref4) 2009 vaswani (ref53) 2017; 30 ref60 howard (ref64) 2017 ref62 |
References_xml | – ident: ref62 doi: 10.1037/1528-3542.5.2.200 – ident: ref70 doi: 10.1109/CVPRW.2018.00281 – ident: ref49 doi: 10.1109/CVPR.2016.90 – ident: ref58 doi: 10.3389/fpsyg.2014.01532 – ident: ref13 doi: 10.1109/FG52635.2021.9666982 – ident: ref41 doi: 10.1109/34.954607 – ident: ref43 doi: 10.1007/978-3-642-21869-9_103 – volume: 30 start-page: 6000 year: 2017 ident: ref53 article-title: Attention is all you need publication-title: Proc Int Conf Adv Neural Inf Process Syst contributor: fullname: vaswani – start-page: 702 year: 2015 ident: ref15 article-title: Facial expression recognition based on transfer learning from deep convolutional networks publication-title: Proc 11th Int Conf Nat Comput (ICNC) contributor: fullname: xu – ident: ref29 doi: 10.1007/3-540-55606-0_49 – ident: ref67 doi: 10.1109/CVPR.2009.5206848 – ident: ref5 doi: 10.1007/978-3-642-13388-6_29 – ident: ref20 doi: 10.1162/neco.1997.9.8.1735 – volume: 22 start-page: 39 year: 2001 ident: ref30 article-title: Intelligent tutoring systems with conversational dialogue publication-title: AI Mag contributor: fullname: graesser – start-page: 1 year: 2018 ident: ref56 article-title: Finding flatter minima with SGD publication-title: Proc ICLR contributor: fullname: jastrzebski – ident: ref7 doi: 10.1109/FG.2019.8756624 – ident: ref34 doi: 10.1109/MIS.2007.79 – ident: ref26 doi: 10.1109/FIE49875.2021.9637240 – ident: ref59 doi: 10.1016/j.learninstruc.2012.05.003 – ident: ref35 doi: 10.1007/978-3-319-07221-0_4 – start-page: 1 year: 2016 ident: ref31 article-title: Using feature selection and unsupervised clustering to identify affective expressions in educational games publication-title: Proc Workshop Motivational Affect Issues (ITS) 8th Int Conf (ITS) contributor: fullname: amershi – year: 2018 ident: ref1 publication-title: MathSpring math tutor – ident: ref40 doi: 10.1109/T-AFFC.2010.10 – ident: ref32 doi: 10.1016/j.ijhcs.2009.12.003 – volume: 10 start-page: 1755 year: 2009 ident: ref52 article-title: Dlib-ml: A machine learning toolkit publication-title: J Mach Learn Res contributor: fullname: king – ident: ref47 doi: 10.1109/ICCVW54120.2021.00405 – ident: ref21 doi: 10.1109/FG52635.2021.9667001 – ident: ref63 doi: 10.1037/0022-3514.52.6.1122 – ident: ref24 doi: 10.1007/978-3-030-52237-7_31 – ident: ref50 doi: 10.1109/TAFFC.2017.2740923 – start-page: 17 year: 2009 ident: ref4 article-title: Emotion sensors go to school publication-title: Proc Conf Artif Intell Educ Build Learn Syst Care Knowl Represent Affect Model contributor: fullname: arroyo – ident: ref17 doi: 10.1109/TKDE.2009.191 – ident: ref27 doi: 10.1080/00461520.2011.611369 – ident: ref42 doi: 10.1504/IJLT.2009.028804 – ident: ref14 doi: 10.1016/j.imavis.2017.01.012 – ident: ref19 doi: 10.5244/C.29.41 – ident: ref33 doi: 10.1080/1358165042000283101 – ident: ref69 doi: 10.1109/ICISCE.2017.95 – ident: ref51 doi: 10.1109/FG.2018.00019 – ident: ref71 doi: 10.1109/CVPR.2016.23 – year: 2001 ident: ref23 publication-title: Optimising ITS behaviour with Bayesian networks and decision theory[J] contributor: fullname: mayo – year: 2020 ident: ref54 article-title: An image is worth 16x16 words: Transformers for image recognition at scale publication-title: arXiv 2010 11929 contributor: fullname: dosovitskiy – ident: ref11 doi: 10.1145/2647868.2654916 – ident: ref48 doi: 10.1007/978-3-030-77873-6_16 – start-page: 9 year: 2005 ident: ref46 article-title: Empathetic virtual peers enhanced learner interest and self-efficacy publication-title: Proc Workshop Motivation Affect Educ Softw Conjunction 12th Int Conf Artif Intell Educ contributor: fullname: kim – ident: ref2 doi: 10.1007/s40593-014-0023-y – ident: ref44 doi: 10.1186/s40594-018-0111-x – ident: ref8 doi: 10.1109/ICCV.2015.430 – year: 2015 ident: ref65 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 contributor: fullname: simonyan – ident: ref55 doi: 10.1109/ICCV48922.2021.00986 – ident: ref3 doi: 10.1007/978-3-642-13388-6_37 – ident: ref60 doi: 10.1007/s11162-005-8150-9 – ident: ref38 doi: 10.1109/ITHET.2006.339720 – ident: ref68 doi: 10.1109/CVPR.2019.00118 – ident: ref12 doi: 10.1109/TMM.2016.2523421 – ident: ref39 doi: 10.1007/978-3-319-93843-1_26 – ident: ref66 doi: 10.1109/CVPR.2017.195 – ident: ref28 doi: 10.3102/0034654315581420 – volume: 14 start-page: 1 year: 2011 ident: ref61 article-title: Improving student engagement publication-title: Current Issues in IT Education contributor: fullname: parsons – start-page: 96 year: 2017 ident: ref45 article-title: Addressing student behavior and affect with empathy and growth mindset publication-title: Proc 10th Int Conf Educ Data Min (EDM) contributor: fullname: karumbaiah – ident: ref22 doi: 10.1016/j.ijhcs.2012.01.004 – ident: ref18 doi: 10.1109/FG.2019.8756620 – volume: 83 start-page: 61 year: 0 ident: ref57 article-title: A novel database of children's spontaneous facial expressions (LIRIS-CSE) publication-title: Image Vis Comput contributor: fullname: khan – start-page: 1222 year: 2018 ident: ref37 article-title: Prediction of student achievement goals and emotion valence during interaction with pedagogical agents publication-title: Proc 17th Int Conf Auton Agents MultiAgent Syst contributor: fullname: lallé – ident: ref10 doi: 10.1016/j.patrec.2013.02.002 – year: 2017 ident: ref64 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv 1704 04861 contributor: fullname: howard – start-page: 3951 year: 2016 ident: ref6 article-title: Affective personalization of a social robot tutor for children's second language skills publication-title: Proc 30th AAAI Conf Artif Intell contributor: fullname: gordon – ident: ref25 doi: 10.1007/978-3-319-45153-4_41 – ident: ref36 doi: 10.1016/j.ijhcs.2007.02.003 – ident: ref16 doi: 10.1109/FG52635.2021.9666945 – ident: ref9 doi: 10.1109/ICIP.2012.6467436 |
SSID | ssj0002049049 |
Score | 2.316809 |
Snippet | We propose a video-based transfer learning approach for predicting problem outcomes of students working with an intelligent tutoring system (ITS) by analyzing... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 411 |
SubjectTerms | Annotations behavior prediction Behavioral sciences Datasets engagement prediction Faces Human behavior intelligent tutoring system Learning Predictions Predictive models Problem solving Recurrent neural networks Representations Students Task analysis Transfer learning Tutoring video classification Videos Webcams |
Title | ATL-BP: A Student Engagement Dataset and Model for Affect Transfer Learning for Behavior Prediction |
URI | https://ieeexplore.ieee.org/document/9906410 https://www.proquest.com/docview/2847965469 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UYuLFX2hEkfTgTQtb263UGwgEE1QSMPG2dGvHxQzDj4P_vX1dISZ68bZkW7P0W_u-1_e-9xC6pdowY5kGCSNNCY91SJSikmSW63IjuIkECIVHU_Hy3ukPoEzO_U4LY4xxyWemBZculq8X2QaOytp254w56KmqVNixKqg6mPb6492ZCoUwFpdbbUwg27Pe0-uz9QIpbYFYhUPG1g_74xqq_NqFnWkZHv_vo07QkaeQuFtifor2THGGDsqmkl81lHVnY9KbPOAunpaFK_GgmPscF9xXa2u31lgVGkMftA9sWSvuuqwO7AxXbpbYV12du5u-hOIST5YQ1QEkz9HbcDB7HBHfSoFkjMk1UYFSUcyFijM49FE8VaGlYta3sxhyJcPc-i0x40IHVBphaVZmlz7VPI1NRoViF6hSLApziXBoOWHKVB4awXisgtS6sixisbDj6Lwj6-huO8HJZ1kxI3GeRiATB0cCcCQejjqqwZTunvSzWUeNLSaJX1SrBCypBPGVvPr7rWt0CN3gy2zaBqqslxtzg_ZXetP0v0rTCfy-AYvnvG8 |
link.rule.ids | 315,782,786,798,27642,27933,27934,54767,54942 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oxOjFtxFF7cGbru62ZUu9gUAgApKAibdN2RYuZjE8Dv57O91CTPTibZN9ZDNf2_nmDXBLtWHGMo0gqmga8FhHgVJUBqnlutwIbioCC4XbQ9F_rzaa2CbnflMLY4xxyWfmAS9dLF_P0hW6yh7tyRlzrKcqWquG0wIUm8N6o7vxqVAMY3G5ro0J5eOo3nntWSuQ0gcsVuGYsfVD_7iBKr9OYadaWgf_-6lD2PcUktRyzI9gy2THsJMPlfw6gbQ26gb1wROpkWHeuJI0s6nPcSENtbR6a0lUpgnOQfsglrWSmsvqIE5xTcyc-K6rU3fTt1Cck8EcozqI5Cm8tZqj53bgRykEKWNyGahQqUrMhYpTdPooPlaRpWLWtrMYciWjibVbYsaFDqk0wtKs1G59qvk4NikVip1BIZtl5hxIZDnhmKlJZATjsQrH1pRlFRYL-x09qcoS3K0FnHzmHTMSZ2mEMnFwJAhH4uEowQmKdPOkl2YJymtMEr-pFglqUonFV_Li77duYLc96nWTbqf_cgl7OBk-z6wtQ2E5X5kr2F7o1bVfNt8U6L5b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ATL-BP%3A+A+Student+Engagement+Dataset+and+Model+for+Affect+Transfer+Learning+for+Behavior+Prediction&rft.jtitle=IEEE+transactions+on+biometrics%2C+behavior%2C+and+identity+science&rft.au=Ruiz%2C+Nataniel&rft.au=Yu%2C+Hao&rft.au=Allessio%2C+Danielle+A.&rft.au=Jalal%2C+Mona&rft.date=2023-07-01&rft.pub=IEEE&rft.eissn=2637-6407&rft.volume=5&rft.issue=3&rft.spage=411&rft.epage=424&rft_id=info:doi/10.1109%2FTBIOM.2022.3210479&rft.externalDocID=9906410 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6407&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6407&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6407&client=summon |