Optimal neutron Larmor precession magnets
Spectroscopic techniques based on Larmor precession of particle spins require that for all trajectories of a diverging beam the path integral of the modulus of the magnetic field must be a constant. The amount of precession performed by each spin is then a function of the particle energy only. For c...
Saved in:
Published in: | IEEE transactions on magnetics Vol. 24; no. 2; pp. 1540 - 1543 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
IEEE
01-03-1988
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spectroscopic techniques based on Larmor precession of particle spins require that for all trajectories of a diverging beam the path integral of the modulus of the magnetic field must be a constant. The amount of precession performed by each spin is then a function of the particle energy only. For cylinder magnets this homogeneity condition can be expressed as a variational problem. An analytical solution is presented for this variation problem. This solution describes the optimal field shape (OFS) to obtain the best possible homogeneity for a given magnet length. In practice the ideal shape can be obtained by superposing a series of solenoids of different lengths but the homogeneity is generally not good enough so that in-beam correction coils are needed that include corrections for the line integral differences caused by the finite-beam divergence. The solution is presented together with a method to implement it in practice using discrete in-beam current distributions. The resulting magnet has a homogeneity of 10/sup -6/, so that the Larmor precession angle is still well defined after 10/sup 4/ turns.< > |
---|---|
Bibliography: | SourceType-Scholarly Journals-2 ObjectType-Feature-2 ObjectType-Conference Paper-1 content type line 23 SourceType-Conference Papers & Proceedings-1 ObjectType-Article-3 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 |
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/20.11539 |