Characteristics optimization of composite phase-change wall during intermittent heating process

The indoor thermal environment under an intermittent heating condition can be maintained by rationally utilizing the heat storage and release processes of the composite phase-change wall (composite-PCW), leading to heating time and energy consumption reductions. In order to optimize its heat storage...

Full description

Saved in:
Bibliographic Details
Published in:HVAC&R research Vol. 26; no. 4; pp. 541 - 551
Main Authors: Li, Yanru, Long, Enshen, Ding, Pei, Guo, Shurui
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis 20-04-2020
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The indoor thermal environment under an intermittent heating condition can be maintained by rationally utilizing the heat storage and release processes of the composite phase-change wall (composite-PCW), leading to heating time and energy consumption reductions. In order to optimize its heat storage and release processes, the influences of different parameters on the dynamic thermal processes of composite-PCW were studied, including the position and thickness of phase-change material (PCM), phase transition temperature, phase-change latent heat, and PCM thermal conductivity, according to two typical intermittent conditions summarized by experimental data. With large heat storage efficiency η and small heat loss rate ε, the optimized composite-PCW that was adaptive for intermittent heating was the composite-PCW with 10 mm PCM integrated to the wall inside. Its phase-transition temperature was 19-20 °C (66.2-68 °F), the phase-change latent heat was 220 kJ/kg (95.58 btu/lb), and the thermal conductivity was 0.4 W/(m·K) (0.23 btu/(ft·h·°F)) at liquid states and 0.8 W/(m·K) (0.46 btu/(ft·h·°F)) at solid states.
AbstractList The indoor thermal environment under an intermittent heating condition can be maintained by rationally utilizing the heat storage and release processes of the composite phase-change wall (composite-PCW), leading to heating time and energy consumption reductions. In order to optimize its heat storage and release processes, the influences of different parameters on the dynamic thermal processes of composite-PCW were studied, including the position and thickness of phase-change material (PCM), phase transition temperature, phase-change latent heat, and PCM thermal conductivity, according to two typical intermittent conditions summarized by experimental data. With large heat storage efficiency η and small heat loss rate ε, the optimized composite-PCW that was adaptive for intermittent heating was the composite-PCW with 10 mm PCM integrated to the wall inside. Its phase-transition temperature was 19–20 °C (66.2–68 °F), the phase-change latent heat was 220 kJ/kg (95.58 btu/lb), and the thermal conductivity was 0.4 W/(m·K) (0.23 btu/(ft·h·°F)) at liquid states and 0.8 W/(m·K) (0.46 btu/(ft·h·°F)) at solid states.
Author Guo, Shurui
Long, Enshen
Li, Yanru
Ding, Pei
Author_xml – sequence: 1
  givenname: Yanru
  surname: Li
  fullname: Li, Yanru
  organization: College of Architecture and Environment, Sichuan University
– sequence: 2
  givenname: Enshen
  surname: Long
  fullname: Long, Enshen
  email: longes2@163.com
  organization: Institute of Disaster Management and Reconstruction, Sichuan University-Hong Kong PolyU
– sequence: 3
  givenname: Pei
  surname: Ding
  fullname: Ding, Pei
  organization: Institute of Disaster Management and Reconstruction, Sichuan University-Hong Kong PolyU
– sequence: 4
  givenname: Shurui
  surname: Guo
  fullname: Guo, Shurui
  organization: College of Architecture and Environment, Sichuan University
BookMark eNp9kF1LwzAUhoNMcM79BCHgdWfSpE17pwy_QPBGwbuQpSdrRpvUJGPMX2_HppdencPh_eA8l2jivAOErilZUFKR25wJzgWji5zQekFLxmvGztD0cM-44J-Tv53RCzSPcUMIoaJkIs-nSC5bFZROEGxMVkfsh2R7-62S9Q57g7XvBx9tAjy0KkKmW-XWgHeq63CzDdatsXWjvbcpgUu4hdE6HofgNcR4hc6N6iLMT3OGPh4f3pfP2evb08vy_jXTjFUpMzUHtiIrsypYoWrRMEEU16IoyorU0JR5U4JhxnBScNCUCF7UmhNhBDRNVbMZujnmjr1fW4hJbvw2uLFSjt-XQpRVTkdVcVTp4GMMYOQQbK_CXlIiDzjlL055wClPOEff3dFnnfGhVzsfukYmte98MEE5baNk_0f8AIcRf3U
CitedBy_id crossref_primary_10_1016_j_enbuild_2019_07_011
crossref_primary_10_1016_j_tsep_2023_102143
crossref_primary_10_1080_23744731_2023_2253089
crossref_primary_10_1016_j_jobe_2022_105136
crossref_primary_10_2298_TSCI221231078Z
crossref_primary_10_1177_0144598720969217
crossref_primary_10_1016_j_heliyon_2022_e10056
Cites_doi 10.1016/j.enbuild.2010.05.012
10.1016/j.scs.2018.01.040
10.1016/j.enconman.2004.05.011
10.1016/j.apenergy.2013.08.067
10.1016/j.buildenv.2014.07.012
10.1016/j.enbuild.2005.11.012
10.1016/j.applthermaleng.2017.11.042
10.1016/j.enbuild.2010.08.019
10.1080/23744731.2016.1218235
10.1016/j.enconman.2014.06.061
10.1016/j.enbuild.2011.07.021
10.1016/S0196-8904(03)00131-6
10.1016/j.buildenv.2015.05.014
10.1016/j.rser.2010.08.019
10.1080/23744731.2018.1527137
10.1016/j.apenergy.2012.12.079
10.1016/j.enbuild.2013.08.029
10.1016/j.enbuild.2008.04.013
10.1016/j.applthermaleng.2003.10.015
10.1016/j.apenergy.2013.08.045
10.1016/j.enconman.2016.04.065
10.1016/S0038-092X(00)00012-8
10.1016/j.apenergy.2018.01.088
10.1016/j.enbuild.2008.03.005
10.1016/j.solmat.2005.01.017
ContentType Journal Article
Copyright 2019 ASHRAE 2019
2019 ASHRAE
Copyright_xml – notice: 2019 ASHRAE 2019
– notice: 2019 ASHRAE
DBID AAYXX
CITATION
U9A
DOI 10.1080/23744731.2019.1634933
DatabaseName CrossRef
DatabaseTitle CrossRef
Career and Technical Education (Alumni Edition)
DatabaseTitleList Career and Technical Education (Alumni Edition)

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2374-474X
EndPage 551
ExternalDocumentID 10_1080_23744731_2019_1634933
1634933
Genre Original Articles
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2016YFC0700400
– fundername: National Natural Science Foundation of China
  grantid: 51778382
GroupedDBID 0BK
0R~
30N
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABDBF
ABFIM
ABJVF
ABLIJ
ABPEM
ABQHQ
ABTAI
ABXUL
ACGFS
ACGOD
ACIWK
ACTIO
ADGTB
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFOLD
AFWLO
AGDLA
AHDLD
AIJEM
AIRXU
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
B0M
BLEHA
CCCUG
DGEBU
DKSSO
EAP
EBS
EMK
EPL
ESX
FUNRP
FVPDL
GEVLZ
GTTXZ
H13
I-F
IPNFZ
IRD
ITF
ITG
ITH
KYCEM
LJTGL
M4Z
O9-
RIG
RNANH
ROSJB
RTWRZ
SNACF
TEN
TFL
TFT
TFW
TTHFI
TUS
V1K
ZGOLN
~8M
AAYXX
ABJNI
ABPAQ
ABXYU
AHDZW
AWYRJ
CITATION
TBQAZ
TDBHL
TUROJ
.7F
.QJ
29I
3FF
4.4
5GY
8R4
8R5
ADCVX
AGMYJ
BENPR
CE4
E~A
E~B
GUQSH
HCIFZ
HF~
HZ~
H~P
J.P
M2O
NA5
P2P
RWL
RZS
S-T
TAE
U9A
UT5
UU3
~S~
ID FETCH-LOGICAL-c338t-f94e3b0bfb535a97d370a4c7556809ed62d6ef3ff4054ec107459c407f7edd893
IEDL.DBID TFW
ISSN 2374-4731
IngestDate Thu Oct 10 20:11:58 EDT 2024
Fri Aug 23 01:29:29 EDT 2024
Tue Jun 13 19:27:09 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-f94e3b0bfb535a97d370a4c7556809ed62d6ef3ff4054ec107459c407f7edd893
PQID 2376776821
PQPubID 32491
PageCount 11
ParticipantIDs crossref_primary_10_1080_23744731_2019_1634933
informaworld_taylorfrancis_310_1080_23744731_2019_1634933
proquest_journals_2376776821
PublicationCentury 2000
PublicationDate 2020-04-20
PublicationDateYYYYMMDD 2020-04-20
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-20
  day: 20
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle HVAC&R research
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Zhao R.Y. (e_1_3_1_29_1) 2008
e_1_3_1_22_1
e_1_3_1_23_1
e_1_3_1_24_1
e_1_3_1_25_1
e_1_3_1_9_1
e_1_3_1_8_1
e_1_3_1_20_1
e_1_3_1_21_1
e_1_3_1_5_1
e_1_3_1_4_1
e_1_3_1_7_1
e_1_3_1_26_1
e_1_3_1_27_1
e_1_3_1_3_1
e_1_3_1_28_1
e_1_3_1_2_1
GB 50736-2012 (e_1_3_1_6_1) 2012
e_1_3_1_10_1
e_1_3_1_14_1
e_1_3_1_13_1
e_1_3_1_12_1
e_1_3_1_11_1
e_1_3_1_18_1
e_1_3_1_17_1
e_1_3_1_16_1
e_1_3_1_15_1
e_1_3_1_19_1
References_xml – ident: e_1_3_1_5_1
  doi: 10.1016/j.enbuild.2010.05.012
– ident: e_1_3_1_14_1
  doi: 10.1016/j.scs.2018.01.040
– ident: e_1_3_1_15_1
  doi: 10.1016/j.enconman.2004.05.011
– ident: e_1_3_1_27_1
  doi: 10.1016/j.apenergy.2013.08.067
– ident: e_1_3_1_8_1
  doi: 10.1016/j.buildenv.2014.07.012
– ident: e_1_3_1_22_1
  doi: 10.1016/j.enbuild.2005.11.012
– ident: e_1_3_1_16_1
– ident: e_1_3_1_18_1
  doi: 10.1016/j.applthermaleng.2017.11.042
– ident: e_1_3_1_4_1
  doi: 10.1016/j.enbuild.2010.08.019
– ident: e_1_3_1_13_1
  doi: 10.1080/23744731.2016.1218235
– ident: e_1_3_1_10_1
  doi: 10.1016/j.enconman.2014.06.061
– ident: e_1_3_1_3_1
  doi: 10.1016/j.enbuild.2011.07.021
– ident: e_1_3_1_9_1
  doi: 10.1016/S0196-8904(03)00131-6
– ident: e_1_3_1_23_1
  doi: 10.1016/j.buildenv.2015.05.014
– ident: e_1_3_1_11_1
  doi: 10.1016/j.rser.2010.08.019
– ident: e_1_3_1_12_1
  doi: 10.1080/23744731.2018.1527137
– ident: e_1_3_1_7_1
  doi: 10.1016/j.apenergy.2012.12.079
– ident: e_1_3_1_25_1
  doi: 10.1016/j.enbuild.2013.08.029
– ident: e_1_3_1_17_1
  doi: 10.1016/j.enbuild.2008.04.013
– ident: e_1_3_1_21_1
  doi: 10.1016/j.applthermaleng.2003.10.015
– ident: e_1_3_1_2_1
  doi: 10.1016/j.apenergy.2013.08.045
– ident: e_1_3_1_26_1
  doi: 10.1016/j.enconman.2016.04.065
– ident: e_1_3_1_19_1
  doi: 10.1016/S0038-092X(00)00012-8
– ident: e_1_3_1_24_1
  doi: 10.1016/j.apenergy.2018.01.088
– volume-title: Air Conditioning
  year: 2008
  ident: e_1_3_1_29_1
  contributor:
    fullname: Zhao R.Y.
– volume-title: Design Code for Heating Ventilation and Air Conditioning of Civil Buildings
  year: 2012
  ident: e_1_3_1_6_1
  contributor:
    fullname: GB 50736-2012
– ident: e_1_3_1_28_1
  doi: 10.1016/j.enbuild.2008.03.005
– ident: e_1_3_1_20_1
  doi: 10.1016/j.solmat.2005.01.017
SSID ssj0001763722
ssj0006393
Score 2.3006527
Snippet The indoor thermal environment under an intermittent heating condition can be maintained by rationally utilizing the heat storage and release processes of the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 541
SubjectTerms Energy consumption
Energy storage
Heat conductivity
Heat loss
Heat storage
Heat transfer
Heating
Indoor environments
Latent heat
Optimization
Phase change materials
Phase transitions
Thermal conductivity
Thermal environments
Transition temperature
Title Characteristics optimization of composite phase-change wall during intermittent heating process
URI https://www.tandfonline.com/doi/abs/10.1080/23744731.2019.1634933
https://www.proquest.com/docview/2376776821
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwx8IwoFeWB1SWMnrseqtOrEQhFsluMPMZS2oqn4-9zFiWiFEAOskW1F5_O7d9bdMyG3EHFl4WTGjOWGCZMnTHmLlTsh4Two56onWSaP8uGlfz9CmZxB0wuDZZWYQ4coFFFhNR5uU6yairi7lEshJMfsrqe6QCgEZOWAwqi5DR49HT9_3bLA8YlqiDiJ4aymjeenhbYC1JZ86Te4rmLQ-PAf_v6IHNQElA6ixxyTHT8_IfsbsoSnRA-3VZzpAnDlrW7YpItAsQ4di708Xb5CFGSxe5h-mNmMxr5HijIUqBUAlLykCPj4cRm7Es7I03g0HU5Y_RADs5DBliwo4XmRFKHIeGaUdFwmRliJ6mWJ8i5PXe4DDwHYn4CdBlqSKQupYpDeOWBE56Q1X8z9BaE9CxBs89wZ1Rcwpp-YIvMWSJ0tVJqbNuk21tfLqLehe7WMaWM5jZbTteXaRG3ukS6ri44QXyXR_Je5nWZDdX10Vzgyl5CEpb3LPyx9RfZSzMwTATjUIa3yfe2vye7KrW8qD_0EGKzjDw
link.rule.ids 315,782,786,1455,1509,27935,27936,58024,59737,60526
linkProvider Taylor & Francis
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwIxEG4ED-rBtxFF7cHr4rLtbunRIAQjchGjt6bbRzwgEIH4953Zh0KM8aDXTdtspp2Z72tmvhJyCRlXpFbEgTZMB1wnYSCdwcodHzLmpbXZkyy9BzF4bt10UCbnsxcGyyqRQ_tcKCKL1ejceBldlsRdRUxwLhjSu6ZsAKLgQMsrZB3AMUMCNuw-fd2zgAPleog4K8BpZSPPTyutpKgVAdNvATvLQt2d__j_XbJdYFB6nR-aPbLmxvtka0mZ8ICo9qqQM51AaHktejbpxFMsRcd6L0enL5AIg7yBmL7r0YjmrY8UlShQLgBQ-ZxizMeP07wx4ZA8djvDdi8o3mIIDJDYeeAldywNU5_GLNZSWCZCzY1AAbNQOptENnGeeQ8AkMNmAzKJpQG26IWzFkDREamOJ2N3TGjTQBQ2SWK1bHEY0wp1GjsDuM6kMkp0jTRK86tpLrmhmoWSaWk5hZZTheVqRC5vkppndx0-f5hEsV_m1ssdVYX3znBkIoCHRc2TPyx9QTZ6w_u-6t8O7k7JZoREPeQQluqkOn9buDNSmdnFeXZcPwCCz-c2
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA62gujBt1itmoPXrdtNdtMcSx9UlCJY0VvI5oGH2hbb4t93Zh_YIuJBr0sSlslk5vvCzBdCriHjitSKONCG6YDrJAykM1i540PGvLQ2e5Jl8CiGL61uD2Vy2mUvDJZVIof2uVBEFqvxcM-sLyvibiImOBcM2V1TNgBQcGDlFbIZtyDhgEuP-s9f1yxwfnI5RJwV4LSyj-enldYy1Jp-6bd4nSWh_t4__P4-2S0QKG3nLnNANtzkkOys6BIeEdVZl3GmUwgsb0XHJp16ioXoWO3l6OwV0mCQtw_TDz0e07zxkaIOBYoFACZfUIz4-HGWtyUck6d-b9QZBMVLDIEBCrsIvOSOpWHq05jFWgrLRKi5EShfFkpnk8gmzjPvAf5x2GrAJbE0wBW9cNYCJDoh1cl04k4JbRqIwSZJrJYtDmNaoU5jZwDVmVRGia6RRml9NcsFN1Sz0DEtLafQcqqwXI3I1T1Si-ymw-fPkij2y9x6uaGqOLtzHJkIYGFR8-wPS1-RrYduX93fDu_OyXaELD3kEJPqpLp4X7oLUpnb5WXmrJ-2muXa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characteristics+optimization+of+composite+phase-change+wall+during+intermittent+heating+process&rft.jtitle=Science+%26+technology+for+the+built+environment&rft.au=Li%2C+Yanru&rft.au=Long%2C+Enshen&rft.au=Ding%2C+Pei&rft.au=Guo%2C+Shurui&rft.date=2020-04-20&rft.pub=Taylor+%26+Francis&rft.issn=2374-4731&rft.eissn=2374-474X&rft.volume=26&rft.issue=4&rft.spage=541&rft.epage=551&rft_id=info:doi/10.1080%2F23744731.2019.1634933&rft.externalDocID=1634933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-4731&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-4731&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-4731&client=summon