Characteristics optimization of composite phase-change wall during intermittent heating process
The indoor thermal environment under an intermittent heating condition can be maintained by rationally utilizing the heat storage and release processes of the composite phase-change wall (composite-PCW), leading to heating time and energy consumption reductions. In order to optimize its heat storage...
Saved in:
Published in: | HVAC&R research Vol. 26; no. 4; pp. 541 - 551 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Philadelphia
Taylor & Francis
20-04-2020
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The indoor thermal environment under an intermittent heating condition can be maintained by rationally utilizing the heat storage and release processes of the composite phase-change wall (composite-PCW), leading to heating time and energy consumption reductions. In order to optimize its heat storage and release processes, the influences of different parameters on the dynamic thermal processes of composite-PCW were studied, including the position and thickness of phase-change material (PCM), phase transition temperature, phase-change latent heat, and PCM thermal conductivity, according to two typical intermittent conditions summarized by experimental data. With large heat storage efficiency η and small heat loss rate ε, the optimized composite-PCW that was adaptive for intermittent heating was the composite-PCW with 10 mm PCM integrated to the wall inside. Its phase-transition temperature was 19-20 °C (66.2-68 °F), the phase-change latent heat was 220 kJ/kg (95.58 btu/lb), and the thermal conductivity was 0.4 W/(m·K) (0.23 btu/(ft·h·°F)) at liquid states and 0.8 W/(m·K) (0.46 btu/(ft·h·°F)) at solid states. |
---|---|
AbstractList | The indoor thermal environment under an intermittent heating condition can be maintained by rationally utilizing the heat storage and release processes of the composite phase-change wall (composite-PCW), leading to heating time and energy consumption reductions. In order to optimize its heat storage and release processes, the influences of different parameters on the dynamic thermal processes of composite-PCW were studied, including the position and thickness of phase-change material (PCM), phase transition temperature, phase-change latent heat, and PCM thermal conductivity, according to two typical intermittent conditions summarized by experimental data. With large heat storage efficiency η and small heat loss rate ε, the optimized composite-PCW that was adaptive for intermittent heating was the composite-PCW with 10 mm PCM integrated to the wall inside. Its phase-transition temperature was 19–20 °C (66.2–68 °F), the phase-change latent heat was 220 kJ/kg (95.58 btu/lb), and the thermal conductivity was 0.4 W/(m·K) (0.23 btu/(ft·h·°F)) at liquid states and 0.8 W/(m·K) (0.46 btu/(ft·h·°F)) at solid states. |
Author | Guo, Shurui Long, Enshen Li, Yanru Ding, Pei |
Author_xml | – sequence: 1 givenname: Yanru surname: Li fullname: Li, Yanru organization: College of Architecture and Environment, Sichuan University – sequence: 2 givenname: Enshen surname: Long fullname: Long, Enshen email: longes2@163.com organization: Institute of Disaster Management and Reconstruction, Sichuan University-Hong Kong PolyU – sequence: 3 givenname: Pei surname: Ding fullname: Ding, Pei organization: Institute of Disaster Management and Reconstruction, Sichuan University-Hong Kong PolyU – sequence: 4 givenname: Shurui surname: Guo fullname: Guo, Shurui organization: College of Architecture and Environment, Sichuan University |
BookMark | eNp9kF1LwzAUhoNMcM79BCHgdWfSpE17pwy_QPBGwbuQpSdrRpvUJGPMX2_HppdencPh_eA8l2jivAOErilZUFKR25wJzgWji5zQekFLxmvGztD0cM-44J-Tv53RCzSPcUMIoaJkIs-nSC5bFZROEGxMVkfsh2R7-62S9Q57g7XvBx9tAjy0KkKmW-XWgHeq63CzDdatsXWjvbcpgUu4hdE6HofgNcR4hc6N6iLMT3OGPh4f3pfP2evb08vy_jXTjFUpMzUHtiIrsypYoWrRMEEU16IoyorU0JR5U4JhxnBScNCUCF7UmhNhBDRNVbMZujnmjr1fW4hJbvw2uLFSjt-XQpRVTkdVcVTp4GMMYOQQbK_CXlIiDzjlL055wClPOEff3dFnnfGhVzsfukYmte98MEE5baNk_0f8AIcRf3U |
CitedBy_id | crossref_primary_10_1016_j_enbuild_2019_07_011 crossref_primary_10_1016_j_tsep_2023_102143 crossref_primary_10_1080_23744731_2023_2253089 crossref_primary_10_1016_j_jobe_2022_105136 crossref_primary_10_2298_TSCI221231078Z crossref_primary_10_1177_0144598720969217 crossref_primary_10_1016_j_heliyon_2022_e10056 |
Cites_doi | 10.1016/j.enbuild.2010.05.012 10.1016/j.scs.2018.01.040 10.1016/j.enconman.2004.05.011 10.1016/j.apenergy.2013.08.067 10.1016/j.buildenv.2014.07.012 10.1016/j.enbuild.2005.11.012 10.1016/j.applthermaleng.2017.11.042 10.1016/j.enbuild.2010.08.019 10.1080/23744731.2016.1218235 10.1016/j.enconman.2014.06.061 10.1016/j.enbuild.2011.07.021 10.1016/S0196-8904(03)00131-6 10.1016/j.buildenv.2015.05.014 10.1016/j.rser.2010.08.019 10.1080/23744731.2018.1527137 10.1016/j.apenergy.2012.12.079 10.1016/j.enbuild.2013.08.029 10.1016/j.enbuild.2008.04.013 10.1016/j.applthermaleng.2003.10.015 10.1016/j.apenergy.2013.08.045 10.1016/j.enconman.2016.04.065 10.1016/S0038-092X(00)00012-8 10.1016/j.apenergy.2018.01.088 10.1016/j.enbuild.2008.03.005 10.1016/j.solmat.2005.01.017 |
ContentType | Journal Article |
Copyright | 2019 ASHRAE 2019 2019 ASHRAE |
Copyright_xml | – notice: 2019 ASHRAE 2019 – notice: 2019 ASHRAE |
DBID | AAYXX CITATION U9A |
DOI | 10.1080/23744731.2019.1634933 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef Career and Technical Education (Alumni Edition) |
DatabaseTitleList | Career and Technical Education (Alumni Edition) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2374-474X |
EndPage | 551 |
ExternalDocumentID | 10_1080_23744731_2019_1634933 1634933 |
Genre | Original Articles |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2016YFC0700400 – fundername: National Natural Science Foundation of China grantid: 51778382 |
GroupedDBID | 0BK 0R~ 30N AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABDBF ABFIM ABJVF ABLIJ ABPEM ABQHQ ABTAI ABXUL ACGFS ACGOD ACIWK ACTIO ADGTB AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFOLD AFWLO AGDLA AHDLD AIJEM AIRXU AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW B0M BLEHA CCCUG DGEBU DKSSO EAP EBS EMK EPL ESX FUNRP FVPDL GEVLZ GTTXZ H13 I-F IPNFZ IRD ITF ITG ITH KYCEM LJTGL M4Z O9- RIG RNANH ROSJB RTWRZ SNACF TEN TFL TFT TFW TTHFI TUS V1K ZGOLN ~8M AAYXX ABJNI ABPAQ ABXYU AHDZW AWYRJ CITATION TBQAZ TDBHL TUROJ .7F .QJ 29I 3FF 4.4 5GY 8R4 8R5 ADCVX AGMYJ BENPR CE4 E~A E~B GUQSH HCIFZ HF~ HZ~ H~P J.P M2O NA5 P2P RWL RZS S-T TAE U9A UT5 UU3 ~S~ |
ID | FETCH-LOGICAL-c338t-f94e3b0bfb535a97d370a4c7556809ed62d6ef3ff4054ec107459c407f7edd893 |
IEDL.DBID | TFW |
ISSN | 2374-4731 |
IngestDate | Thu Oct 10 20:11:58 EDT 2024 Fri Aug 23 01:29:29 EDT 2024 Tue Jun 13 19:27:09 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-f94e3b0bfb535a97d370a4c7556809ed62d6ef3ff4054ec107459c407f7edd893 |
PQID | 2376776821 |
PQPubID | 32491 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1080_23744731_2019_1634933 informaworld_taylorfrancis_310_1080_23744731_2019_1634933 proquest_journals_2376776821 |
PublicationCentury | 2000 |
PublicationDate | 2020-04-20 |
PublicationDateYYYYMMDD | 2020-04-20 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | HVAC&R research |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Zhao R.Y. (e_1_3_1_29_1) 2008 e_1_3_1_22_1 e_1_3_1_23_1 e_1_3_1_24_1 e_1_3_1_25_1 e_1_3_1_9_1 e_1_3_1_8_1 e_1_3_1_20_1 e_1_3_1_21_1 e_1_3_1_5_1 e_1_3_1_4_1 e_1_3_1_7_1 e_1_3_1_26_1 e_1_3_1_27_1 e_1_3_1_3_1 e_1_3_1_28_1 e_1_3_1_2_1 GB 50736-2012 (e_1_3_1_6_1) 2012 e_1_3_1_10_1 e_1_3_1_14_1 e_1_3_1_13_1 e_1_3_1_12_1 e_1_3_1_11_1 e_1_3_1_18_1 e_1_3_1_17_1 e_1_3_1_16_1 e_1_3_1_15_1 e_1_3_1_19_1 |
References_xml | – ident: e_1_3_1_5_1 doi: 10.1016/j.enbuild.2010.05.012 – ident: e_1_3_1_14_1 doi: 10.1016/j.scs.2018.01.040 – ident: e_1_3_1_15_1 doi: 10.1016/j.enconman.2004.05.011 – ident: e_1_3_1_27_1 doi: 10.1016/j.apenergy.2013.08.067 – ident: e_1_3_1_8_1 doi: 10.1016/j.buildenv.2014.07.012 – ident: e_1_3_1_22_1 doi: 10.1016/j.enbuild.2005.11.012 – ident: e_1_3_1_16_1 – ident: e_1_3_1_18_1 doi: 10.1016/j.applthermaleng.2017.11.042 – ident: e_1_3_1_4_1 doi: 10.1016/j.enbuild.2010.08.019 – ident: e_1_3_1_13_1 doi: 10.1080/23744731.2016.1218235 – ident: e_1_3_1_10_1 doi: 10.1016/j.enconman.2014.06.061 – ident: e_1_3_1_3_1 doi: 10.1016/j.enbuild.2011.07.021 – ident: e_1_3_1_9_1 doi: 10.1016/S0196-8904(03)00131-6 – ident: e_1_3_1_23_1 doi: 10.1016/j.buildenv.2015.05.014 – ident: e_1_3_1_11_1 doi: 10.1016/j.rser.2010.08.019 – ident: e_1_3_1_12_1 doi: 10.1080/23744731.2018.1527137 – ident: e_1_3_1_7_1 doi: 10.1016/j.apenergy.2012.12.079 – ident: e_1_3_1_25_1 doi: 10.1016/j.enbuild.2013.08.029 – ident: e_1_3_1_17_1 doi: 10.1016/j.enbuild.2008.04.013 – ident: e_1_3_1_21_1 doi: 10.1016/j.applthermaleng.2003.10.015 – ident: e_1_3_1_2_1 doi: 10.1016/j.apenergy.2013.08.045 – ident: e_1_3_1_26_1 doi: 10.1016/j.enconman.2016.04.065 – ident: e_1_3_1_19_1 doi: 10.1016/S0038-092X(00)00012-8 – ident: e_1_3_1_24_1 doi: 10.1016/j.apenergy.2018.01.088 – volume-title: Air Conditioning year: 2008 ident: e_1_3_1_29_1 contributor: fullname: Zhao R.Y. – volume-title: Design Code for Heating Ventilation and Air Conditioning of Civil Buildings year: 2012 ident: e_1_3_1_6_1 contributor: fullname: GB 50736-2012 – ident: e_1_3_1_28_1 doi: 10.1016/j.enbuild.2008.03.005 – ident: e_1_3_1_20_1 doi: 10.1016/j.solmat.2005.01.017 |
SSID | ssj0001763722 ssj0006393 |
Score | 2.3006527 |
Snippet | The indoor thermal environment under an intermittent heating condition can be maintained by rationally utilizing the heat storage and release processes of the... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 541 |
SubjectTerms | Energy consumption Energy storage Heat conductivity Heat loss Heat storage Heat transfer Heating Indoor environments Latent heat Optimization Phase change materials Phase transitions Thermal conductivity Thermal environments Transition temperature |
Title | Characteristics optimization of composite phase-change wall during intermittent heating process |
URI | https://www.tandfonline.com/doi/abs/10.1080/23744731.2019.1634933 https://www.proquest.com/docview/2376776821 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwx8IwoFeWB1SWMnrseqtOrEQhFsluMPMZS2oqn4-9zFiWiFEAOskW1F5_O7d9bdMyG3EHFl4WTGjOWGCZMnTHmLlTsh4Two56onWSaP8uGlfz9CmZxB0wuDZZWYQ4coFFFhNR5uU6yairi7lEshJMfsrqe6QCgEZOWAwqi5DR49HT9_3bLA8YlqiDiJ4aymjeenhbYC1JZ86Te4rmLQ-PAf_v6IHNQElA6ixxyTHT8_IfsbsoSnRA-3VZzpAnDlrW7YpItAsQ4di708Xb5CFGSxe5h-mNmMxr5HijIUqBUAlLykCPj4cRm7Es7I03g0HU5Y_RADs5DBliwo4XmRFKHIeGaUdFwmRliJ6mWJ8i5PXe4DDwHYn4CdBlqSKQupYpDeOWBE56Q1X8z9BaE9CxBs89wZ1Rcwpp-YIvMWSJ0tVJqbNuk21tfLqLehe7WMaWM5jZbTteXaRG3ukS6ri44QXyXR_Je5nWZDdX10Vzgyl5CEpb3LPyx9RfZSzMwTATjUIa3yfe2vye7KrW8qD_0EGKzjDw |
link.rule.ids | 315,782,786,1455,1509,27935,27936,58024,59737,60526 |
linkProvider | Taylor & Francis |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwIxEG4ED-rBtxFF7cHr4rLtbunRIAQjchGjt6bbRzwgEIH4953Zh0KM8aDXTdtspp2Z72tmvhJyCRlXpFbEgTZMB1wnYSCdwcodHzLmpbXZkyy9BzF4bt10UCbnsxcGyyqRQ_tcKCKL1ejceBldlsRdRUxwLhjSu6ZsAKLgQMsrZB3AMUMCNuw-fd2zgAPleog4K8BpZSPPTyutpKgVAdNvATvLQt2d__j_XbJdYFB6nR-aPbLmxvtka0mZ8ICo9qqQM51AaHktejbpxFMsRcd6L0enL5AIg7yBmL7r0YjmrY8UlShQLgBQ-ZxizMeP07wx4ZA8djvDdi8o3mIIDJDYeeAldywNU5_GLNZSWCZCzY1AAbNQOptENnGeeQ8AkMNmAzKJpQG26IWzFkDREamOJ2N3TGjTQBQ2SWK1bHEY0wp1GjsDuM6kMkp0jTRK86tpLrmhmoWSaWk5hZZTheVqRC5vkppndx0-f5hEsV_m1ssdVYX3znBkIoCHRc2TPyx9QTZ6w_u-6t8O7k7JZoREPeQQluqkOn9buDNSmdnFeXZcPwCCz-c2 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA62gujBt1itmoPXrdtNdtMcSx9UlCJY0VvI5oGH2hbb4t93Zh_YIuJBr0sSlslk5vvCzBdCriHjitSKONCG6YDrJAykM1i540PGvLQ2e5Jl8CiGL61uD2Vy2mUvDJZVIof2uVBEFqvxcM-sLyvibiImOBcM2V1TNgBQcGDlFbIZtyDhgEuP-s9f1yxwfnI5RJwV4LSyj-enldYy1Jp-6bd4nSWh_t4__P4-2S0QKG3nLnNANtzkkOys6BIeEdVZl3GmUwgsb0XHJp16ioXoWO3l6OwV0mCQtw_TDz0e07zxkaIOBYoFACZfUIz4-HGWtyUck6d-b9QZBMVLDIEBCrsIvOSOpWHq05jFWgrLRKi5EShfFkpnk8gmzjPvAf5x2GrAJbE0wBW9cNYCJDoh1cl04k4JbRqIwSZJrJYtDmNaoU5jZwDVmVRGia6RRml9NcsFN1Sz0DEtLafQcqqwXI3I1T1Si-ymw-fPkij2y9x6uaGqOLtzHJkIYGFR8-wPS1-RrYduX93fDu_OyXaELD3kEJPqpLp4X7oLUpnb5WXmrJ-2muXa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characteristics+optimization+of+composite+phase-change+wall+during+intermittent+heating+process&rft.jtitle=Science+%26+technology+for+the+built+environment&rft.au=Li%2C+Yanru&rft.au=Long%2C+Enshen&rft.au=Ding%2C+Pei&rft.au=Guo%2C+Shurui&rft.date=2020-04-20&rft.pub=Taylor+%26+Francis&rft.issn=2374-4731&rft.eissn=2374-474X&rft.volume=26&rft.issue=4&rft.spage=541&rft.epage=551&rft_id=info:doi/10.1080%2F23744731.2019.1634933&rft.externalDocID=1634933 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-4731&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-4731&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-4731&client=summon |